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Definition

o finite set of states S, often |S| =2
@ mapping (“rule table”) f: 5 — S

@ a lattice of n sites with coordination number z where site / has
neighbours a(i,1),a(i,2),...a(i, z)

@ time-discrete dynamics of lattice site /

si(t+1) = flsa(i1)(t), - - - Sa(i 2y (£)]

All lattice sites are updated in synchrony.
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Purpose

@ Computer Science: Models of computation,
e.g. "Game of Life" and “rule 110" are Turing-complete.

@ Artificial Life: Study of self-reproducing structures

@ Physics: Abstractions of spatio-temporal dynamics, pattern formation

Motto: Simplest rules may yield most complex patterns / computations.
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Putative CA dynamics on plant leaves

Peak et al., PNAS (2004)
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CA model for morphogenesis in Hydra
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Rohlf & Bornholdt, JSTAT (2005)
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Seashell
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Seashell and elementary CA rule 22
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Seashell and elementary CA rule 30
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Role of noise?

@ Are the observed patterns robust under small stochastic
perturbations?

@ Stability analysis in continuous dynamical systems: Make a small
perturbation and check if the system returns to the fixed point / limit
cycle.

@ Here: Discretized state space. What is a “small” perturbation?

@ “Typical” implementation of noise in CA:

Stochastic asynchronous update
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Rule 22, comparison sync / async update

synchronous update
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Rule 150, comparison sync / async update

synchronous update asynchronous update  async, another realization

Konstantin Klemm (Leipzig) 11 /25



Rule 90, comparison sync / async update

synchronous update asynchronous update  async, another realization

o
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Loss of memory

mutual information between cell’ s state at time t
and initial condition
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Evolution of mutual information between one cell's state at time t and the
full initial configuration.
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Summary so far

@ Deterministic CA:
“Complex” (interesting) spatio-temporal pattern formation

@ CA with noise implemented as stochastic update order:
Largely irreproducible dynamics

@ Devastating effect of stochastic asynchronous update known for long,

cf. Ingerson and Buvel, Physica D (1984)
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How to proceed

Solution 0

Use more states and more complicated interactions to implement
additional clock signals
cf. Nehaniv, Int. J. Alg. Comp. (2004)

Solution 1

@ Stick to simple rules

o Consider a less destructive type of perturbation.

o Get happy.
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Framework for perturbed timing

@ Now time t € R, no longer discrete.
@ Expand initial condition s(0) to unit interval:
o fi(s(0)) L ift>1-—0;
sit) = { si(0) , otherwise

where §; € [0, ¢] is drawn randomly and independently for each node i.

@ Let the system evolve according to

t+c

si(t+1)=© [(26)_1/t fi(s(7))dr —1/2

—C

where © is the step function and 1/2 > s > ¢ > 0.

@ Check, if system autonomously regains synchrony.

Klemm & Bornholdt, PNAS 102, 18414 (2005); Phys. Rev. E 72, 055101(R) (2005).
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CA rule 22, initial timing perturbation
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CA rule 22, spatial coarsening of time lags
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CA rule 22, timing perturbation heals




Probability of healing
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Time until healing
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Unstable pattern in rule 110
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Overview of results

@ stable elementary rules
0, 4, 22, 32, 36, 54, 72, 76, 104, 128, 132, 160, 164, 200, 204, 218,
222, 236, 250,254

@ partially stable el. rules (strong dependence on n)
90, 122, 126, 150

@ unstable elementary rules
50, 94, 108, 110, 178

@ Elementary CA fail to produce sustained synchronous blinking of all
cells

@ Game of Life: Blinkers, gliders, spaceships etc. are unstable
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Further results

Konstantin Klemm (Leipzig)

Timing & Stability in CA



Summary

Stable and unstable CA rules can be distinguished by their
response to minimal timing perturbations.
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