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Definition

finite set of states S , often |S | = 2

mapping (“rule table”) f : Sz → S

a lattice of n sites with coordination number z where site i has
neighbours a(i , 1), a(i , 2), . . . a(i , z)

time-discrete dynamics of lattice site i

si (t + 1) = f [sa(i ,1)(t), . . . sa(i ,z)(t)]

All lattice sites are updated in synchrony.
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Purpose

Computer Science: Models of computation,
e.g. “Game of Life” and “rule 110” are Turing-complete.

Artificial Life: Study of self-reproducing structures

Physics: Abstractions of spatio-temporal dynamics, pattern formation

Motto: Simplest rules may yield most complex patterns / computations.
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Putative CA dynamics on plant leaves

Peak et al., PNAS (2004)
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CA model for morphogenesis in Hydra
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Rohlf & Bornholdt, JSTAT (2005)
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Seashell
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Seashell and elementary CA rule 22
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Seashell and elementary CA rule 30
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Role of noise?

Are the observed patterns robust under small stochastic
perturbations?

Stability analysis in continuous dynamical systems: Make a small
perturbation and check if the system returns to the fixed point / limit
cycle.

Here: Discretized state space. What is a “small” perturbation?

“Typical” implementation of noise in CA:

Stochastic asynchronous update
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Rule 22, comparison sync / async update

synchronous update asynchronous update async, another realization
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Rule 150, comparison sync / async update

synchronous update asynchronous update async, another realization
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Rule 90, comparison sync / async update

synchronous update asynchronous update async, another realization
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Loss of memory
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information of a cell’s state at time t
mutual information between cell’s state at time t
and initial condition

Evolution of mutual information between one cell’s state at time t and the
full initial configuration.
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Summary so far

Deterministic CA:
“Complex” (interesting) spatio-temporal pattern formation

CA with noise implemented as stochastic update order:
Largely irreproducible dynamics

Devastating effect of stochastic asynchronous update known for long,
cf. Ingerson and Buvel, Physica D (1984)
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How to proceed

Solution 0

Use more states and more complicated interactions to implement
additional clock signals
cf. Nehaniv, Int. J. Alg. Comp. (2004)

Solution 1

Stick to simple rules

Consider a less destructive type of perturbation.

Get happy.

Konstantin Klemm (Leipzig) Timing & Stability in CA 15 / 25



Framework for perturbed timing

Now time t ∈ R, no longer discrete.

Expand initial condition s(0) to unit interval:

si (t) =

{

fi(s(0)) , if t > 1 − δi

si (0) , otherwise

where δi ∈ [0, ǫ] is drawn randomly and independently for each node i .

Let the system evolve according to

si (t + 1) = Θ

[

(2c)−1

∫

t+c

t−c

fi (s(τ))dτ − 1/2

]

where Θ is the step function and 1/2 > s ≥ ǫ > 0.

Check, if system autonomously regains synchrony.

Klemm & Bornholdt, PNAS 102, 18414 (2005); Phys. Rev. E 72, 055101(R) (2005).
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CA rule 22, initial timing perturbation
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CA rule 22, spatial coarsening of time lags
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CA rule 22, timing perturbation heals

t=240
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Probability of healing
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Time until healing
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Unstable pattern in rule 110
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Overview of results

stable elementary rules
0, 4, 22, 32, 36, 54, 72, 76, 104, 128, 132, 160, 164, 200, 204, 218,
222, 236, 250,254

partially stable el. rules (strong dependence on n)
90, 122, 126, 150

unstable elementary rules
50, 94, 108, 110, 178

Elementary CA fail to produce sustained synchronous blinking of all
cells

Game of Life: Blinkers, gliders, spaceships etc. are unstable
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Further results

Konstantin Klemm (Leipzig) Timing & Stability in CA 24 / 25



Summary

Stable and unstable CA rules can be distinguished by their
response to minimal timing perturbations.
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