Inverse Methods in Systems Biology

James Lu

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

James Lu Inverse Methods in Systems Biology

Cells are complex systems

▲ □ ▶ ▲ □ ▶

< ≣⇒

크

Cells are complex systems

In the face of continuously changing environments and its state, cells need to respond appropriately:

Cells are complex systems

- In the face of continuously changing environments and its state, cells need to respond appropriately:
- inputs: nutrients, repellants, heat shock, DNA damage, ...
- responses: movement, growth, protein production, death

 Complex networks of genes and pathways are involved in mediating the various inputs to the appropriate responses

Signal transduction network: Hanahan and Weinberg, Cell (2000)

< ≣⇒

臣

Forward Problems

• Consider ODE models: $\dot{y}(t) = f(y(t),q)$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へで

Forward Problems

- Consider ODE models: $\dot{y}(t) = f(y(t),q)$
- The Forward analysis may include:
 - numerical integration for a set of given parameters
 - sensitivity analysis
 - bifurcation analysis

reactions $\rightarrow \frac{dy}{dt} = f(y,q) \rightarrow \{y(t), \text{ bifurcations}\}$

・ロン ・四 ・ ・ ヨン ・ ヨン

臣

reactions $\leftarrow \frac{dy}{dt} = f(y,q) \leftarrow \{y(t), \text{ bifurcations}\}$

In Inverse Problems, one looks for the causes of observed and desired effects

reactions $\leftarrow \frac{dy}{dt} = f(y,q) \leftarrow \{y(t), \text{ bifurcations}\}$

Parameter identification from time-course data

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

reactions $\leftarrow \frac{dy}{dt} = f(y,q) \leftarrow \{y(t), \text{ bifurcations}\}$

- Parameter identification from time-course data
- Inverse bifurcation: infer model mechanisms that can achieve the desired bifurcation behaviors
 - maximize the parameter domain for oscillations
 - place bifurcation points at the desired locations

reactions $\leftarrow \frac{dy}{dt} = f(y,q) \leftarrow \{y(t), \text{ bifurcations}\}$

- Parameter identification from time-course data
- Inverse bifurcation: infer model mechanisms that can achieve the desired bifurcation behaviors
 - maximize the parameter domain for oscillations
 - place bifurcation points at the desired locations
- Inverse problems are typically *ill-posed*:
 - solutions may not exist or unique
 - the solution may not depend on the data in a continuous manner

reactions $\leftarrow \frac{dy}{dt} = f(y,q) \leftarrow \{y(t), \text{ bifurcations}\}$

- Parameter identification from time-course data
- Inverse bifurcation: infer model mechanisms that can achieve the desired bifurcation behaviors
 - maximize the parameter domain for oscillations
 - place bifurcation points at the desired locations
- Inverse problems are typically *ill-posed*:
 - solutions may not exist or unique
 - the solution may not depend on the data in a continuous manner
- To numerically tackle inverse problems, regularization strategies are needed

Forward operator equation:

$$F(q) = y$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へで

Forward operator equation:

F(q) = y

Inverse problem: determining q from y

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Forward operator equation:

$$F(q) = y$$

- Inverse problem: determining q from y
- Typically *ill-posed* (in the sense of Hadamard):
 - non-uniqueness;
 - instability of inversion

▲□ → ▲ □ → ▲ □ → …

2

Forward operator equation:

$$F(q) = y$$

- Inverse problem: determining q from y
- Typically *ill-posed* (in the sense of Hadamard):
 - non-uniqueness;
 - instability of inversion
- Variational regularization: add penalty term

$$\min_{q} \|F(q) - y\| + \mu \mathscr{R}(q)$$

<回> < 回> < 回> < 回> -

Forward operator equation:

$$F(q) = y$$

- Inverse problem: determining q from y
- Typically *ill-posed* (in the sense of Hadamard):
 - non-uniqueness;
 - instability of inversion
- Variational regularization: add penalty term

$$\min_{q} \|F(q) - y\| + \mu \mathscr{R}(q)$$

 While stabilizing ill-posed problems, regularization brings bias to the solution

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Forward operator equation:

$$F(q) = y$$

- Inverse problem: determining q from y
- Typically *ill-posed* (in the sense of Hadamard):
 - non-uniqueness;
 - instability of inversion
- Variational regularization: add penalty term

$$\min_{q} \|F(q) - y\| + \mu \mathscr{R}(q)$$

- While stabilizing ill-posed problems, regularization brings bias to the solution
- For biological problems, usually want to find solutions that are *sparse*, i.e., having as few non-zero entries as possible: Ockam's razor

Sparsity-Promoting Regularization

► As the regularization term, consider smoothed functionals $\mathbb{R}^n \to \mathbb{R}$: $l_{p,\varepsilon}(q) = \sum_i (q_i^2 + \varepsilon)^{p/2}$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Sparsity-Promoting Regularization

- As the regularization term, consider smoothed functionals $\mathbb{R}^n \to \mathbb{R}$: $l_{p,\varepsilon}(q) = \sum_i (q_i^2 + \varepsilon)^{p/2}$
- Convex only within the box $\{q : |q_i| < \sqrt{\varepsilon}, 0 < i \le n\}$

□ > < □ > < □ > □ □

Sparsity-Promoting Regularization

- ► As the regularization term, consider smoothed functionals $\mathbb{R}^n \to \mathbb{R}$: $l_{p,\varepsilon}(q) = \sum_i (q_i^2 + \varepsilon)^{p/2}$
- ► Convex only within the box $\{q : |q_i| < \sqrt{\varepsilon}, 0 < i \le n\}$
- Recent applications of sparse solutions using non-convex penalty:
 - Exact reconstruction of sparse signals via nonconvex minimization, R. Chartrand (2007)
 - Compressive sensing using l₁ re-weighting, E. Candes, S. P. Boyd, M. Wakin *et al.* (2007)
 - Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices, M. Fazel, H. Hindi and S. P Boyd (2003)

M. Swat, A. Kel, H. Herzel, Bioinformatics (2004)

(ロ) (部) (E) (E) (E)

M. Swat, A. Kel, H. Herzel, Bioinformatics (2004)

イロン イヨン イヨン -

2

M. Swat, A. Kel, H. Herzel, Bioinformatics (2004)

Which of the interactions play important roles in controlling the geometry of the bifurcation diagram?

Map various bifurcation phenotypes to parameter sets

回 とうほ とうせい

크

- Map various bifurcation phenotypes to parameter sets
- Consider the following 3 modes of transformations of the nominal bifurcation diagram:

< 注→ -

- Map various bifurcation phenotypes to parameter sets
- Consider the following 3 modes of transformations of the nominal bifurcation diagram:

回 とくほ とくほとう

臣

- Map various bifurcation phenotypes to parameter sets
- Consider the following 3 modes of transformations of the nominal bifurcation diagram:

• E •

< ≣⇒

- Map various bifurcation phenotypes to parameter sets
- Consider the following 3 modes of transformations of the nominal bifurcation diagram:

 Inverse bifurcation problem: from conditions on bifurcation diagrams, infer the governing mechanisms

Inverse Bifurcation: effect of sparsity-promiting penalty

문어 문

Inverse Bifurcation: effect of sparsity-promiting penalty

Table: Result of hierarchical algorithm with $p = 0.1, \varepsilon = 10^{-4}$

Modification Case	Level $j = 1$	Level $j = 2$	Level $j = 3$
Elongating SN ₁ nose	$k_n \downarrow 14.3\%$	<u>k₃₄</u> ↑ 31.7%	$\phi_{\text{AP-1}} \downarrow 20.9\%$
	P •	$K_{m2} \uparrow 6.4\%$	¢ _{E2F1} ↑ 7.3%
Moving $SN_{1,2}$ to right	K_{m4} \uparrow 269.3%	<i>J</i> ₁₁ ↑ 191.7%	$k_2 \downarrow 39.9\%$
- , -		$k_p \uparrow 17.3\%$	¢_{E2F1} ↓ 11.7%
			$K_{m2} \downarrow 10.3\%$
Decreasing bistabiliy	<i>J</i> ₁₁ ↑ 128.5%	$k_1 \uparrow 169.1\%$	$k_2 \downarrow 43.7\%$
	$k_p \uparrow 33.8\%$	$K_{m2} \downarrow 21.7\%$	$\phi_{E2F1} \downarrow 28.3\%$
	*	$J_{12} \downarrow 20.1\%$	

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Inverse Bifurcation: identified module

$$\frac{d}{dt}[pRB] = k_1 \frac{[E2F1]}{K_{m1} + [E2F1]} \frac{J_{11}}{J_{11} + [pRB]} \frac{J_{61}}{J_{61} + [pRB_p]} \\ - k_{16}[pRB][CycD_a] + k_{61}[pRB_p] - \phi_{pRB}[pRB], \\ \frac{d}{dt}[E2F1] = k_p + k_2 \frac{a^2 + [E2F1]^2}{K_{m2}^2 + [E2F1]^2} \frac{J_{12}}{J_{12} + [pRB]} \frac{J_{62}}{J_{62} + [pRB_p]} \\ - \phi_{E2F1}[E2F1]$$

$$\frac{d}{dt}[CycD_i] = -k_{34}[CycD_i]\frac{[CycD_a]}{K_{m4} + [CycD_a]} + \cdots$$
$$\frac{d}{dt}[CycD_a] = k_{34}[CycD_i]\frac{[CycD_a]}{K_{m4} + [CycD_a]} + \cdots$$

æ

 Circadian rhythm underlies the 24 hr activity cycle of many organisms

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

- Circadian rhythm underlies the 24 hr activity cycle of many organisms
- Endogenous oscillator entrainable by 24 hr light-dark cycles

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

- Circadian rhythm underlies the 24 hr activity cycle of many organisms
- Endogenous oscillator entrainable by 24 hr light-dark cycles
- Circadian model for Arabidopsis thaliana proposed by Locke et al, Molecular Systems Biology (2005)

★ E → < E → </p>

$$cLc'[t] = -r1 cLc[t] - \frac{mt cuclt}{kt+clc[t]} + p1 cLm[t] + r2 cLn[t]$$

$$cLm'[t] = -\frac{mt cuclt}{kt+cln[t]} + \frac{n1 cxn[t]^{k}}{p1 + cxn[t]^{k}} + q1 cPn[t] LD[t, dayLength]$$

$$cLn'[t] = r1 cLc[t] + r2 cLn[t] - \frac{m3 cuclt}{kt+cuclt}]$$

$$cPn'[t] = -\frac{mt cuclt}{kt+cuclt}] + p5 (1 - LD[t, dayLength]) - q3 cPn[t] LD[t, dayLength]$$

$$cTc'[t] = -r3 cTc[t] + p2 cTm[t] + r4 cTn[t] - \frac{cTc[t] (mt+m5 (1-LD[t, dayLength]))}{kt+cTn[t]}$$

$$cTn'[t] = -\frac{mt cuclt}{kt+cTn[t]} + \frac{g3^{c} na cun[t]^{k}}{(g3^{c} + cun[t]^{c})} (g2^{k} + vn(t]^{k})$$

$$cTn'[t] = r3 cTc[t] - r4 cTn[t] - \frac{cTn(t) (mt+m5 (1-LD[t, dayLength]))}{kt+cTn[t]}$$

$$cTn'[t] = r3 cTc[t] - r4 cTn[t] - \frac{cTn(t) (mt+m5 (1-LD[t, dayLength]))}{kt+cTn[t]}$$

$$cXc'[t] = -r5 cXc[t] - \frac{m10 cxc(t)}{kt+cTn[t]} + p3 cXm[t] + r6 cXn[t]$$

$$cXn'[t] = \frac{n3 cTn[t]^{4}}{g4^{4} + cTn[t]^{4}} - \frac{m3 cxn[t]}{kt+cTn[t]}$$

$$cYc'[t] = -r7 cYc[t] - r6 cXn[t] - \frac{m10 cxc(t)}{kt+cTn[t]} + p4 cYm[t] + r8 cYn[t]$$

$$cYc'[t] = -r7 cYc[t] - \frac{m13 cvc(t)}{kt+cvc(t)} + p4 cYm[t] + r6 cYn[t]$$

$$cYn'[t] = r7 cYc[t] - r8 cYn[t] - \frac{m14 cvn[t]}{kt+cvc(t)} - \frac{m14 cvn[t]}{gt^{4} + cun[t]^{4}}$$

ODE system

▲御入 ▲臣入 ▲臣入 三臣

 Simulation of model with nominal parameters under 12 hr light-dark cycle

くヨ→

臣

Evidence suggests GIGANTEA could be gene Y

Phase misfit with experimental data

J. CW Locke et al., Molecular Systems Biology (2005)

ъ

Evidence suggests GIGANTEA could be gene Y

Phase misfit with experimental data

J. CW Locke et al., Molecular Systems Biology (2005)

ъ

Evidence suggests GIGANTEA could be gene Y

Phase misfit with experimental data

J. CW Locke et al., Molecular Systems Biology (2005)

Inverse problem: vary parameters so that Y mRNA peaks at ZT7 rather than ZT11

• The peak time \hat{t} for the level of Y mRNA, satisfies

$$\dot{y}(t) = f(y,q) f_{YmRNA}(y(\hat{t}),q) = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

• The peak time \hat{t} for the level of Y mRNA, satisfies

$$\dot{y}(t) = f(y,q) f_{YmRNA}(y(\hat{t}),q) = 0$$

Goal: obtain a solution that peaks at time î* by varying as few parameters from the published values, q*, as possible

□ > < E > < E > -

2

• The peak time \hat{t} for the level of Y mRNA, satisfies

$$\dot{y}(t) = f(y,q) f_{YmRNA}(y(\hat{t}),q) = 0$$

- Goal: obtain a solution that peaks at time î^{*} by varying as few parameters from the published values, q^{*}, as possible
- Minimization of the objective:

$$\|\hat{t}(q) - \hat{t}^*\|^2 + \mu l_{p,\varepsilon}(q - q^*) \to \min_q$$

個 と く ヨ と く ヨ と …

2

Y mRNA solution profile for the original parameter set

James Lu Inverse Methods in Systems Biology

Y mRNA solution profile for the identified parameter set

James Lu Inverse Methods in Systems Biology

- Y mRNA solution profile for the identified parameter set
- 1 out of 54 parameters is identified

 Identified parameter: g6, Hill-constant in repression of gene Y by LHY

$$\begin{array}{l} {\rm cLc}'[t] = -r1 \, {\rm cLc}[t] - \frac{\pi z \, {\rm cc}[t]}{k^{2} + {\rm cLc}[t]} + p1 \, {\rm cLm}[t] + r2 \, {\rm cLn}[t] \\ {\rm cLm}'[t] = -\frac{\pi 1 \, {\rm cLm}[t]}{k^{2} + {\rm cLm}[t]^{2}} + q1 \, {\rm cPn}[t] \, {\rm LD}[t, \, {\rm dayLength}] \\ {\rm cLn}'[t] = r1 \, {\rm cLc}[t] - r2 \, {\rm cLn}[t] - \frac{\pi z \, {\rm cLn}[t]}{k^{2} + {\rm cLn}[t]} \\ {\rm cPn}'[t] = -\frac{\pi 15 \, {\rm cPn}[t]}{k^{13} + {\rm cPn}[t]} + p5 \, (1 - {\rm LD}[t, \, {\rm dayLength}]) - q3 \, {\rm cPn}[t] \, {\rm LD}[t, \, {\rm dayLength}] \\ {\rm cTc}'[t] = -\pi 3 \, {\rm cTc}[t] + p2 \, {\rm cTm}[t] + r4 \, {\rm cTn}[t] - \frac{{\rm cTc}[t] \, (\pi 6 + \pi 5 \, (1 - {\rm LD}[t, \, {\rm dayLength}]))}{k^{5} + {\rm cTc}[t]} \\ {\rm cTn}'[t] = -\frac{\pi 4 \, {\rm cTn}[t]}{k^{4} + {\rm cTn}[t]} + \frac{g3^{2} \, n2 \, {\rm cYn}[t]^{k}}{(g3^{2} + {\rm ctn}[t]^{2}) \, (g4^{k} + {\rm cYn}[t]^{k})} \\ {\rm cTn}'[t] = \pi 3 \, {\rm cTc}[t] - r4 \, {\rm cTn}[t] - \frac{{\rm cTn}[t] \, (\pi 8 + \pi 7 \, (1 - {\rm LD}[t, \, {\rm dayLength}]))}{k^{5} + {\rm cTn}[t]} \\ {\rm cTn}'[t] = \pi 3 \, {\rm cTc}[t] - r4 \, {\rm cTn}[t] - \frac{{\rm cTn}[t] \, (\pi 8 + \pi 7 \, (1 - {\rm LD}[t, \, {\rm dayLength}]))}{k^{5} + {\rm cTn}[t]} \\ {\rm cXc}'[t] = -r5 \, {\rm cXc}[t] - \frac{\pi 10 \, {\rm cxo}(t)}{k^{2} + {\rm cXn}[t]} + p3 \, {\rm cXn}[t] + r6 \, {\rm cXn}[t] \\ {\rm cXn}'[t] = \frac{n^{3} \, {\rm cTn}[t]^{d}}{g4^{4} + {\rm cTn}[t]} - \frac{m1 \, {\rm cxn}[t]}{k^{3} + {\rm cXn}[t]} \\ {\rm cXn}'[t] = r7 \, {\rm cXc}[t] - \pi 3 \, {\rm cXn}[t] - \frac{\pi 11 \, {\rm cXn}[t]}{k^{1} + {\rm cYn}[t]} \\ {\rm cYn}'[t] = -r7 \, {\rm cYc}[t] - \frac{\pi 13 \, {\rm cvn}[t]}{k^{1} + {\rm cvn}[t]} + p4 \, {\rm cYn}[t] + r6 \, {\rm cYn}[t] \\ {\rm cYn}'[t] = -\frac{\pi 12 \, {\rm cvm}[t]}{k^{10} + {\rm cvn}[t]} + \frac{\left(q^{2} \, {\rm con}[t] \, {\rm LD}[t, {\rm dayLength}] + \frac{q5^{6} \, {\rm cxn} \, {\rm LD}[t, {\rm dayLength}]}{g5^{6} \, {\rm crat}[t]^{6}} \\ {\rm cYn}'[t] = r7 \, {\rm cYc}[t] - r6 \, {\rm cyn}[t] \, {\rm cTn}[t] - \frac{\pi 11 \, {\rm cxn}[t]}{k^{12} + {\rm cyn}[t]} \\ \end{array} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

We have seen inverse bifurcation problems inferring the underlying mechanisms controlling the qualitative aspects of dynamics

<回> < 回> < 回> < 回> -

크

- We have seen inverse bifurcation problems inferring the underlying mechanisms controlling the qualitative aspects of dynamics
- One may also wish to probe the possibility of different classes of behaviors; e.g., transition of a bistable switch to an oscillator

★ E ► ★ E ►

- We have seen inverse bifurcation problems inferring the underlying mechanisms controlling the qualitative aspects of dynamics
- One may also wish to probe the possibility of different classes of behaviors; e.g., transition of a bistable switch to an oscillator
- Infer mechanisms governing the spectrum of the dynamical system: inverse eigenvalue problems

★ E ► ★ E ►

► For the dynamical system $\dot{y}(t) = f(y,q)$, many bifurcations of equilibrium correspond to various conditions on eigenvalues of $\frac{df(y,q)}{dy}$

- ► For the dynamical system $\dot{y}(t) = f(y,q)$, many bifurcations of equilibrium correspond to various conditions on eigenvalues of $\frac{df(y,q)}{dy}$
- Inverse eigenvalue problems: identify the possible model mechanisms bringing about the desired change in the spectrum

<回> < 回> < 回> < 回> -

- Hybrid solution algorithm:
 - Lift-and-Project (LP)

・ロン ・四 ・ ・ ヨン ・ ヨン

æ

- Hybrid solution algorithm:
 - Lift-and-Project (LP)
 - Quasi-Newton (QN)

・ロン ・四 ・ ・ ヨン ・ ヨン

2

- Hybrid solution algorithm:
 - Lift-and-Project (LP)
 - Quasi-Newton (QN)

Least square formulations with sparsity regularization:

$$\begin{array}{rcl} \mathsf{LP} & : & J(q) = \|A(q) - A_{\mathrm{proj}}\|_{\mathscr{F}}^2 + \mu l_{p,\varepsilon}(q - q^*) \\ \mathsf{QN} & : & J(q) = \sum_i |\lambda_i(q) - \lambda_i^d|^2 + \mu l_{p,\varepsilon}(q - q^*) \end{array}$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

- Hybrid solution algorithm:
 - Lift-and-Project (LP)
 - Quasi-Newton (QN)

Least square formulations with sparsity regularization:

$$\begin{array}{rcl} \mathsf{LP} & : & J(q) = \|A(q) - A_{\mathrm{proj}}\|_{\mathscr{F}}^2 + \mu l_{p,\varepsilon}(q - q^*) \\ \mathsf{QN} & : & J(q) = \sum_i |\lambda_i(q) - \lambda_i^d|^2 + \mu l_{p,\varepsilon}(q - q^*) \end{array}$$

Consider a model for GATA transcription factors

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

- Consider a model for GATA transcription factors
- Scenario: duplication of a gene $A \rightarrow A1$, A2

< E → E

- Consider a model for GATA transcription factors
- Scenario: duplication of a gene $A \rightarrow A1$, A2

Subsequent loss of the activating domain

- Consider a model for GATA transcription factors
- ▶ Scenario: duplication of a gene $A \rightarrow A1$, A2

Subsequent loss of the activating domain

Can oscillations emerge via a few additional mutations?

Evolutionary scenario

★ E ► ★ E ► E

< 17 ×

Evolutionary scenario

- 注 () (注) ()

2

Evolutionary scenario

Identified reactions:

 $\begin{array}{l} \text{AI}^{*}\text{V41}_{-}\text{S}\\ \text{AI}^{*}\text{V1s}[t] = \frac{\text{AI}^{*} \cdot \text{AI}^{*}\text{V41}_{-}\text{SI}}{\text{AI}^{*} \cdot \text{AI}^{*}\text{AI}^{*}\text{AI}^{*}\text{AI}^{*}\text{SI}}\\ \text{AI}^{*}\text{re34}[t] = \frac{\text{AI}^{*} \cdot \text{AI}^{*}}{\text{AI}^{*}\text{re4}}\\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{A2}\text{q}[t] \frac{\text{AI}^{*}\text{D}^{*}\text{A}}{\text{AI}^{*}\text{re4}}\\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{A2}\text{q}[t] \frac{\text{AI}^{*}\text{D}^{*}\text{A}}{\text{AI}^{*}\text{re4}}\\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{A2}\text{q}[t] \text{AI}^{*}\text{D}^{*}\text{A} \\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{A2}\text{q}[t] \text{AI}^{*}\text{re40}[t] \\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{A1}^{*}\text{re40}[t] \\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{A2}\text{q}[t] \text{AI}^{*}\text{re40}[t] \\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{re40}[t] \\ \text{AI}^{*}\text{re40}[t] \\ \text{AI}^{*}\text{re40}[t] = 24\text{AI}^{*}\text{re40}[t] \\ \text{AI}^{*}\text{re40}[t] \\ \text$

イロン イヨン イヨン -

크

 Many inverse problems arise from the modelling and analysis of biological systems

(ロ) (部) (E) (E) (E)

- Many inverse problems arise from the modelling and analysis of biological systems
 - inverse bifurcation problems: reverse engineering, matching model to data

<ロ> <同> <同> < 回> < 回> < 回> = 三

- Many inverse problems arise from the modelling and analysis of biological systems
 - inverse bifurcation problems: reverse engineering, matching model to data
 - inverse eigenvalue problems: model-building, exploration of possible behaviors

- Many inverse problems arise from the modelling and analysis of biological systems
 - inverse bifurcation problems: reverse engineering, matching model to data
 - inverse eigenvalue problems: model-building, exploration of possible behaviors
- Sparsity-promoting regularization can be effective in drawing useful insights from biological models

イロン イヨン イヨン イヨン

æ

Collaborators

RICAM: Heinz Engl, Philipp Kuegler, Stefan Mueller, Clemens Zarzer *University of Vienna*: Peter Schuster, Christoph Flamm, Rainer Machné *Keio University*: Douglas Murray

Funding provided by Vienna Science and Technology Fund (WWTF) is gratefully acknowledged

Wiener Wissenschafts-, Forschungs- und Technologiefonds Project: MA05, MA07