Maximum Likelihood Estimation for RNA homology search Bled 2009

Peter Menzel

Bioinformatics Group, IBHV, Faculty of Life Sciences, Copenhagen University Professur für Bioinformatik, Institut für Informatik, Universität Leipzig

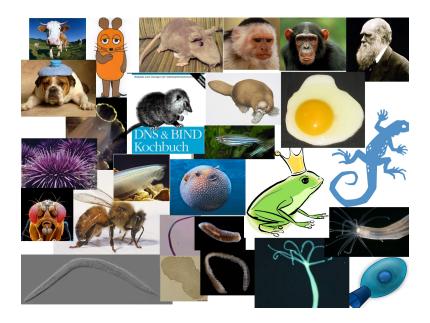
20.02.2009

RNA Homology Search

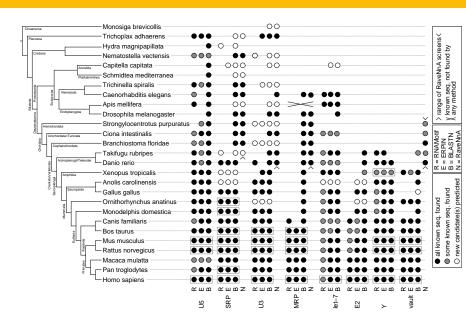
- RFAM 9.1 contains 1371 families of non-coding RNAs
- Tons of newly sequenced genomes can be expected in next years
- ncRNA annotation of already sequenced genomes is still sparse in many cases.
- What is the phylogenic distribution of a certain ncRNA family?
- Derive model for a family based on known sequences, search for homologs.

Search methods

- sequence based: blastn
- sequence + structure, automatic model learning: covariance models (infernal, RaveNnA), erpin
- sequence + structure, descriptor-based programs: RNAMotif, rnabob, PatSearch, ...
 - manually model properties of a family, (usually) very fast


Comparison

 difficulties in ncRNA homolgy search: structure conservation, length variation, frequent small indels

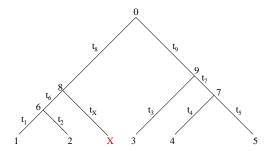

Little experiment

- How well do those methods generalize?
- 8 ncRNA families, 28 genomes
- RNAMotif, blastn, erpin, RaveNnA
- Phylogenetic restricted training set (structure annotated alignment)
- Derive models
- Search all genomes
- RNAMotif: manually derive descriptors from alignment, iteratively search genomes and modify descriptors (3 rounds)

Range of animal genomes

Results

Automatic descriptor design

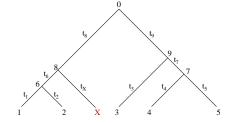

- Current problems in model design: Manually constructing descriptors for a specific ncRNA family is very hard for non-experts
- Tradeoff between specificity and sensitivity, small changes in the descriptor can dramatically affect number of hits
- What we want to have: Given a structure-annotated sequence alignment, automatically build the best descriptor for that family
- Even better: Build a descriptor aimed for searching in one target species

Targeted descriptor design

Idea

Which sequence and structure can be expected in a certain species?

- Knowing the relations between species, build a model optimized for a target organism
- Trade sensitivity off for specificity


Framework

- Assume different evolutionary rates for different parts of the RNA molecule, e.g. loop regions are known to evolve faster than stems.
- ullet Given a phylogenetic tree and a multiple alignment, calculate a mutation rate μ for each paired and unpaired column which maximizes the likelihood of the tree
- Then calculate probabilities for base occurences for a target species in the tree.
- High probability columns contribute to the model
- Derive descriptor (e.g. RNAMotif)

Framework

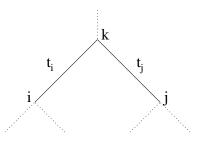
STOCKHOLM

Seq1 #=GR Seq1 SS	CCAUCCGUAAGGGCGGUUGG
Seq2	GCAUCCGUAAGGGCGGUUGC
#=GR Seq2 SS	(((((()))).)))
Seq3	GCAUCCGGAAGGGCGGUAGC
#=GR Seq3 SS	((((()))))
Seq4	GCAUCCGGAAGGGGGGUAGC
#=GR Seq4 SS	(((())))
Seq5	GCAUCUAGC
#=GR Seq5 SS	(())
#=GC SS_cons	(((((())))))
SeqX	????????????????????
#=GC SeqX SS	????????????????????

Algorithm

- lacktriangle Delete leaf X (target species) from tree T
- ② Optimize a mutation rate μ for each paired and unpaired column for maximizing the likelihood of the tree (root 0)

$$\hat{\mu} = \underset{\mu}{\operatorname{argmax}} L(\mu)$$


$$L(\mu) = \sum_{s_0} \pi_{s_0} L_{s_0}(\mu)$$

- Add X to T and root T at X
- **1** Using the estimated $\hat{\mu}$, recalculate likelihoods for all states s_0 of the root node 0

Algorithm

- Tree likelihood is calculated by post-order traversal of the tree (leafs are evaluated first)
- For interior nodes k

$$L_{s_k}(\mu) = \left(\sum_{s_i} P_{s_k s_i}(t_i, \mu) L_{s_i}(\mu)\right) \cdot \left(\sum_{s_j} P_{s_k s_j}(t_j, \mu) L_{s_j}(\mu)\right)$$

Algorithm

- Leaf nodes: $L_{s_k}(\mu) = 1$ if state s_k is in alignment, otherwise $L_{s_k}(\mu) = 0$
- Transition matrix $P_{s_k s_i}(t_i, \mu)$ gives probability for changing s_i into s_k in time t_i given mutation rate μ
- derived from a rate matrix Q containing instentanious substitution rates: $P_{xy}(t, \mu) = [e^{t\mu Q}]_{xy}$
- Q is a substitution rate model, unpaired and paired models, empirical models based on substitution rates derived from alignments (like RIBOSUM)

Problems

Gaps not contained in most models, but in most of the alignments

Model ID no.	Frequency parameters	Rate parameters	Constraints	Free parameters	Reference
6A	6: $\pi_1, \pi_2 \dots \pi_6$	15: α,,	2	19	
6B	6: $\pi_1, \pi_2 \dots \pi_6$	3: α _v , α _d , β	2	7	
6C	3: π_1 , π_2 , π_3	3: α _s , α _d , β	2	4	Tillier (1994)
6D	3: π_1 , π_2 , π_3	2: α,, β	2	3	Tillier (1994)
7A	7: $\pi_1, \pi_2 \dots \pi_7$	21: α,,	2	26	Higgs (2000)
7B	4: π_1 , π_2 , π_3 , π_7	21: α _{ii}	2	23	
7C	7: $\pi_1, \pi_2 \dots \pi_7$	10: α,,	2	15	
7D	7: $\pi_1, \pi_2, \dots \pi_7$	4: α,, α,, β, γ	2	9	Tillier and Collins (1998)
7E	7: $\pi_1, \pi_2 \dots \pi_7$	2: α, γ	2	7	Tillier and Collins (1998)
7F	4: π_1 , π_2 , π_3 , π_7	4: α,, α,, β, γ	2	6	
16A	10: $\pi_1 \dots \pi_{16}$	5: α, α, β, γ, ε	2	19	
16B	16: $\pi_1, \pi_2 \dots \pi_{16}$	1: μ	2	15	Schöniger and von Haeseler (1994)
16C	7: π_1 π_6 . π_m	5: α, α, β, γ, ε	2	10	,
16D	4: π_A , π_C , π_G , π_U	4: α, β, λ, φ	2	6	
16E	4: π_{Λ} , π_{C} , π_{G} , π_{U}	3: α, β, λ	2	5	Muse (1995) modified HKY
16F	4: π_A , π_C , π_G , π_U	3: α, β, λ	2	5	Muse (1995) GU model
16G	0	3: α, β, γ	1	2	RZHETSKY (1995)
16H	0	2: μ, λ	1	1	Muse (1995)

Acknowledgements

- Peter and Jan
- Stefan W., Mario, Mandy, Stefan S. and other people in Leipzig and Copenhagen