Robust cycle bases

Philipp-Jens Ostermeier, University of Leipzig

- $G=(V, E)$ graph, V vertex set, E edge set

- subgraph of G : a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ with $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, $E \subset E$
- cycle: an Eulerian subgraph in which every vertex degree is even
- $G=(V, E)$ graph, V vertex set, E edge set

- subgraph of G : a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ with $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, $E \subset E$
- cycle: an Eulerian subgraph in which every vertex degree is even
- circuit: a connected Eulerian subgraph in which every vertex degree is 2
- the symmetric difference of two edge sets E^{\prime}, $E^{\prime \prime}$ is defined to be
$E^{\prime} \oplus E^{\prime \prime}:=\left(E^{\prime} \cup E^{\prime \prime}\right) \backslash\left(E^{\prime} \cap E^{\prime \prime}\right)$
- circuit: a connected Eulerian subgraph in which every vertex degree is 2
- the symmetric difference of two edge sets E^{\prime}, $E^{\prime \prime}$ is defined to be
$E^{\prime} \oplus E^{\prime \prime}:=\left(E^{\prime} \cup E^{\prime \prime}\right) \backslash\left(E^{\prime} \cap E^{\prime \prime}\right)$

- circuit: a connected Eulerian subgraph in which every vertex degree is 2
- the symmetric difference of two edge sets E^{\prime}, $E^{\prime \prime}$ is defined to be
$E^{\prime} \oplus E^{\prime \prime}:=\left(E^{\prime} \cup E^{\prime \prime}\right) \backslash\left(E^{\prime} \cap E^{\prime \prime}\right)$

- circuit: a connected Eulerian subgraph in which every vertex degree is 2
- the symmetric difference of two edge sets E^{\prime}, $E^{\prime \prime}$ is defined to be
$E^{\prime} \oplus E^{\prime \prime}:=\left(E^{\prime} \cup E^{\prime \prime}\right) \backslash\left(E^{\prime} \cap E^{\prime \prime}\right)$

- circuit: a connected Eulerian subgraph in which every vertex degree is 2
- the symmetric difference of two edge sets E^{\prime}, $E^{\prime \prime}$ is defined to be
$E^{\prime} \oplus E^{\prime \prime}:=\left(E^{\prime} \cup E^{\prime \prime}\right) \backslash\left(E^{\prime} \cap E^{\prime \prime}\right)$

- edge space $E(G): \mathbb{Z} / 2 \mathbb{Z}$-vector space $\left(P(E), \oplus,{ }^{*}\right)$
- $P(E)$ power set of E
- vector addition \oplus defined as above
- scalar multiplication *: 1* $\mathrm{P}=\mathrm{P}, 0^{*} \mathrm{P}=\varnothing, \mathrm{P} \in \mathrm{P}(\mathrm{E})$
- cycle space $Q(G)$: subspace of $E(G)$ consisting of the cycles of G, including the "empty cycle" \varnothing
- cyclomatic number: $\mu(\mathrm{G}):=|\mathrm{E}|-|\mathrm{V}|+1$
$-\operatorname{dim}(G)=\mu(G)$
(Intuition: when there exist more edges at a vertex, $\mu(\mathrm{G})$ is greater)
- for example :

- cycle basis of G : a basis B of $Q G$) consisting of circuits only, i.e. for every cycle C in G, there exists a unique subset $B(C) \subseteq B$ of circuits in B such that $\mathrm{C}=\oplus_{C^{\prime} \in B(C)} \mathrm{C}^{\prime}$ holds
- a sequence (C_{p}, \ldots, C_{k}) of circuits is defined to be cyclically well-arranged, if each partial sum $Q_{j}=\oplus_{i=1}^{j} C i$ is a circuit for all $j \leq k$
- a cycle basis B is cyclically robust, if for every circuit C, the corresponding set $B(C)$ can be cyclically well-arranged
- example:

- example:

cuircuits:

- example:
is a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with cycle basis

- example:

is a graph $G=(V, E)$ with cycle basis

- a graph is complete if each pair of vertices has an edge connecting them
- a graph whose vertices can be divided into two disjoint sets U and V, such that every edge connects a vertex in U to one in V , that is, U and V are independend sets, is called bipartite
- a complete bipartite graph is a graph in which every two vertices from different vertex sets are connected
$K_{p, q}$ is the complete bipartite graph, $\mathrm{p}, \mathrm{q} \in \mathbb{N}$ $|\mathrm{U}|=\mathrm{q},|\mathrm{V}|=\mathrm{p}$
- connecting each green vertex with all red vertices

- $K_{p, q}$ is the complete bipartite graph, $\mathrm{p}, \mathrm{q} \in \mathbb{N}$ Paul Kainen asserts:
For every pair of postive integers p,q, $K_{p, q}$ has a robust cycle basis consisting of all 4-cycles containing two fixed vertices, one of each color

Counter example:
$K_{5,5}$

$-\mu=25-10+1=16$

- every basis element has the following form: $\left(1-6-a_{i}-b_{i}-1\right), \mathbf{i} \in\{1, . ., 16\}$, (a-b) is an edge, a is a green vertex, b is a red vertex
$K_{5,5}$

- denote $\mathrm{I}=\{1, . ., 6\}$

$$
\begin{aligned}
& a_{1} \neq a_{i} \forall i \in \mathrm{I} \backslash\{1\}, a_{2} \neq a_{i} \forall i \in \mathrm{I} \backslash\{2\}, a_{3}=a_{4}, a_{5}=a_{6} \\
& b_{3} \neq b_{i} \forall i \in \mathrm{I} \backslash\{3\}, b_{5} \neq b_{i} \forall i \in \mathrm{I} \backslash\{5\}, b_{1}=b_{4}, b_{2}=b_{6}
\end{aligned}
$$

- no we construct the following circuit by symmetric difference of these 6 circuits:

$$
\left(1-b_{5}-a_{5}-b_{2}-a_{2}-6-a_{1}-b_{1}-a_{3}-b_{3}-1\right)
$$

- all graphs generated by 5 of those 6 circuits contain (1-6), if one computes the symmetric difference with a basis cycle which includes an a_{i} contained in two cycles, then the vertex degree at 6 is 4 , the same holds at 1 and b_{i} by computing the symmetric difference with a basis cycle that contains an a_{i} which is not contained in another basis cycle
- for example:
-(1-7-4-8-5-6-2-10-3-9-1)
- compute the symm. diff. with the generating circuit :
(1-6-3-9-1), the new graph contains the edges (1-6),(2-6),(5-6),(6-3)

$$
K_{5,5}
$$

- for example:
-(1-7-4-8-5-6-2-10-3-9-1)
- compute the symm. diff. with the generating circuit : (1-6-3-9-1), the new graph contains the edges (1-6),(2-6),(5-6),(6-3)

$$
K_{5,5}
$$

- for example:
-(1-7-4-8-5-6-2-10-3-9-1)
- compute the symm. diff. with the generating circuit :
(1-6-3-9-1), the new graph contains the edges (1-6),(2-6),(5-6),(6-3)

$$
K_{5,5}
$$

- for example:
-(1-7-4-8-5-6-2-10-3-9-1)
- compute the symm. diff. with the generating circuit :
(1-6-2-10-1), the new graph contains the edges (1-7),(1-9),(1-6),(1-10)

- a set of circuits F on the graph G is called quasi-robust, if and only if the following graph $\mathrm{H}=(\mathrm{K}, \mathrm{L})$ is connected, K is the set of elementary cycles of G, L the set (C, D) of all pairs of circuits, such that there exists an $\mathrm{O} \in \mathrm{F}$ with $\mathrm{C} \oplus \mathrm{D}=\mathrm{O}$
- the Kainen basis for $K_{5,5}$ is quasi-robust (proved by a computer programme)

Thanks for your attention !!!

