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- G=(V,E) graph, V vertex set, E edge set

    
    - subgraph of G: a graph G'=(V',E') with V'  V,          ⊆
            E'  E ⊆
    

- cycle: an Eulerian subgraph in which every              
                 vertex degree is even
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- circuit: a connected Eulerian subgraph in 
        which every vertex degree is 2

- the symmetric difference of two edge sets E´,
  E´´ is defined to be 
  E´  E´´ := (E´ E´´)\(E´∩E´´)⊕ ∪
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- edge space E(G) : /2 -vector space (ℤ ℤ P(E), ,*)⊕
   - P(E) power set of E
   - vector addition  defined as above⊕
   - scalar multiplication * : 1*P=P, 0*P= , P∅ ∈P(E) 

- cycle space C(G): subspace of E(G) consisting of
     the cycles of G, including the “empty cycle“  ∅
   



  

 

- cyclomatic number: μ(G):=|E|-|V|+1 
   
- dimC(G)=μ(G)
    (Intuition: when there exist more edges at a 
            vertex, μ(G) is greater)

- for example :                   

μ(G) =1                 μ(G)=2

     .   .
          μ(G) =0                 



  

                                                               
- cycle basis of G: a basis B of C(G) consisting of   
      circuits only, i.e. for every cycle C in G, there   
      exists a unique subset B(C) B of circuits in B ⊆
      such that C=             C'  holds 

- a sequence (    ,....,     ) of circuits is defined to
   be cyclically well-arranged, if each partial 
   sum                      is a circuit for all j≤k    

- a cycle basis B is cyclically robust, if for every 
  circuit C, the corresponding set B(C) can be
  cyclically well-arranged

   

⊕C '∈B C 

C1 C k

Q j=⊕i=1
j C i
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cuircuits:



  

- example: is a graph G=(V,E) with cycle basis   

C1 C 2 C3

. . . .
                            . .



  

- example: is a graph G=(V,E) with cycle basis   

C1 C 2 C3

c3 c2

c2

. . . .
                            . .

.  .  
  .  

 



  

- a graph is complete if each pair of vertices has 
  an edge connecting them

- a graph whose vertices can be divided into two 
  disjoint sets U and V, such that every edge 
  connects a vertex in U to one in V, that is, U
  and V are independend sets, is called bipartite

- a complete bipartite graph is a graph in which
  every two vertices from different vertex sets are 
  connected   
  



  

         is the complete bipartite graph, p,q∈ℕ
                                 |U|=q, |V|=p    

  - connecting each  green vertex with all red vertices 

K p ,q

K 5,5

.    .    .    .    .

.    .    .    .    .

1                 2                 3                 4                  5

6                 7                 8                  9                10 



  

-         is the complete bipartite graph, p,q∈ℕ
Paul Kainen asserts:
   For every pair of postive integers p,q,
   has a robust cycle basis consisting  of  all 4-cycles
   containing two fixed vertices, one of each color

Counter example:

K p ,q

K p ,q

K 5,5
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6                 7                 8                  9                10 



  

K 5,5

.    .    .    .    .

.    .    .    .    .

1                 2                 3                 4                  5

6                 7                 8                  9                10 

- μ=25-10+1=16

- every basis element has the following form:
  (1-6-    -    -1) , i {1,..,16},∈
  (a-b) is an edge, a is a green vertex, b is a red 
   vertex

    

ai bi



  

- denote
     a1≠ai i∈ a3=a4 , a5=a6

b1=b4 , b2=b6b3≠bi i∈

    
      - no we construct the following circuit by 
        symmetric difference of these 6 circuits:
  
      

 

I\{1}, a2≠a i i∈ I\{2},
I\{3}, b5≠bi i∈ I\{5},

I={1,..,6}

1−b5−a5−b2−a2−6−a1−b1−a3−b3−1

   



  

- all graphs generated by 5 of those 6 circuits
  contain (1-6), if one computes the symmetric 
  difference with a basis cycle which includes
  an    contained in two cycles, then the vertex
  degree at 6 is 4, the same holds at 1 and     
  by computing the symmetric difference with
  a basis cycle that contains an    which is not  
  contained in another basis cycle          
  

bi
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- for example:

   -(1-7-4-8-5-6-2-10-3-9-1)
   - compute the symm. diff. with the generating    
     circuit :
     (1-6-3-9-1), the new graph contains the edges
     (1-6),(2-6),(5-6),(6-3)
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K 5,5

.    .    .    .    .

.    .    .    .    .

1                 2                 3                 4                  5
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- for example:

   -(1-7-4-8-5-6-2-10-3-9-1)
   - compute the symm. diff. with the generating    
     circuit :
    (1-6-2-10-1), the new graph contains the          
     edges (1-7),(1-9),(1-6),(1-10)



  

- a set of circuits F on the graph G is called 
  quasi-robust, if and only if the following graph 
  H=(K,L) is connected, K is the set of elementary 
  cycles of G, L the set (C,D ) of all pairs of circuits,
  such that there exists an O F with C D=O∈ ⊕

- the Kainen basis for 
   

K 5,5 is quasi-robust
      (proved by a computer programme)



  

Thanks for your attention !!!
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