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Genome-wide comparative genomics approach
Search for short conserved introns in insect genomes
Capable to identify conserved transcripts

Novel conserved introns — novel cons. transcripts

Intron detection allows to

e ...extend annotation of existing coding or UTRs
o ...identify novel protein coding genes
o ...identify novel mMRNA-like ncRNAs
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e Central topic of current RNA research

e ENCODE: Large portion of the transcriptional output
of eukaryotic genomes consists of mMRNA-like
noncoding RNAs.

e Capped, polyadenylated, often (alternatively) spliced
(just like protein-coding genes), but lack discernible
open reading frames
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e Gene regulators: Evi-2, Xist, roX1, Tsix, XistAS,
rox2, H19, mei, LPW, KvDMR1, DGCR5, CMPD

(e.g. Evf-2 acts as transciptional enhancer for distal-less homeobox genes)
e Some serve as precursor for miRNAs and snoRNAs

e Abiotic stress signals: gadd7/adaptl5, adapt33, hsrw,
OxyR, DsrA, Ibi, G90

(e.g. expression caused by UV radiation)

e Biotic stress signals: His-1, ENOD40, CR20, GUT15

(e.g. expression correlated with viral insertion or carcinogenesis)

e Others: UHG, NTT, Bsr, BC1, BC200, SRA

— functionally important ncRNA class
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The idea

Functional pair of donor (5’) and acceptor (3’) splice sites
will be retained over long evolutionary time scales only if

1. The locus is transcribed into a functional transcript

2. Accurate intron removal is necessary to produce a
functional transcript

— Find the intron — it guides you to your novel transcript



The data

12 drosophila genomes (fly)

+ Anopheles gambiae (mosquito)
+ Tribolium castaneum (beetle)

+ Apis melifera (honeybee)



The method

A predict introns in individual insect genomes using intronscan =25+ strand intron
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Nucleotide frequencies in SS positions differ
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e.g. Apis prefers A over G (donor +3) and T over C (accepor -3)



Learn log-odd substitution scores

logs (free=t}) — substitution matrix

VX,y € {A7T7C7G}
X #y



Evaluating intron evolution - an example

bositive negative
substitution scores -

o—1
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Results

intronscan: ~1.4 Mio introns in Dmel
alignments: 498k loci
155.5k overlap annotated protein-coding transcripts

Two SS: 23.5k (positive sample), one SS: 14.5k
(ommited), no SS: 117.5k (negative samples)

SVM training: 95%

SVM testing: 5%

area under ROC: 0.983

p>0.95: 80% true positives at 0.12% false positives

p>0.99: 72% true positives at 0.07% false positives
(4 FP, manual inspection: 3 are true introns — 1 FP)



Novel spliced transcripts

369 predictions outside of protein-cod. genes (p>0.95)

131 EST/FlyBase-transcript confirmed introns, 238 unconfirmed



Novel protein-coding genes
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A) CONTRAST predicted coding gene, B) NSCAN coding gene

e 20/238 located within 100nt upstream of cod. genes
e 14/20 no annotated 5’UTR

(in contrast to 77/218, Fischer’s exact test, p=0.005)

e 23 extend CDS, 30 belong to novel CDS
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Novel spliced non-coding RNAs

e remove everything protein-coding
e remove repeats

— Heureka! You've found mincRNAs.

e 129 bona fide mincRNAs
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Novel mRNA-like noncoding RNAs

e 29/129 have predicted orthologous introns outside
Sophophora subgenus (D. virilis, D. mojavensis, D.
grimshawi)

— conserved exon-intron structure over 63 My years
e Mostly unstructured (just 2 transcripts have RNAz hit)
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Experimental verification

e RT-PCR, 5 different develomental stages of Dmel:
embryo, larva, pupa, male, female

e 18/29 (62%) experimentally validated:
mincRNAs: 7/12
introns in putative coding transcripts: 11/17



Experimental verification of mIncRNAs
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Summary

e Novel method that predicts intron-containing
transcripts
e We solely use intron information for prediction

We identify novel...
e transcripts coding for proteins or mIncRNAs

e transcripts without conserved secondary structures
e transcripts with low sequence conservation

Limitations: Transcript start, transcript end?
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