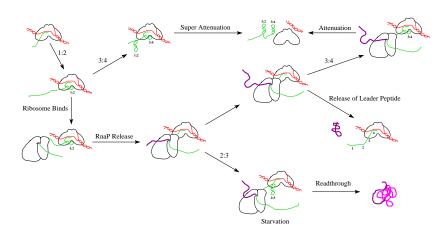
RNA kinetics on varying energy landscapes

Christoph Flamm

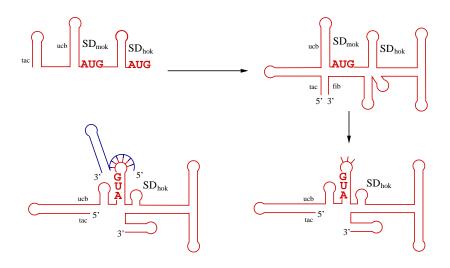
Institute for Theoretical Chemistry University of Vienna

TBI Winterseminar 2009, Bled, February 15-22



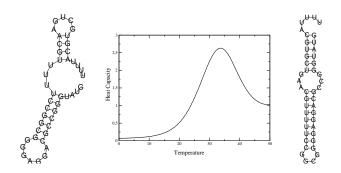
Motivation

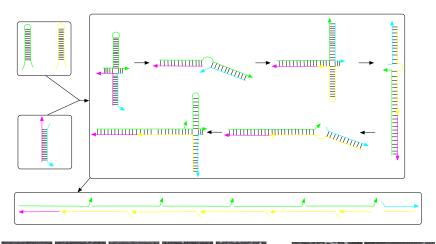
Dynamic processes (on changing landscapes) show up all over the place.

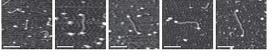

- Natural phenomena
 - Folding during transcription (Terminator/Antiterminator).
 - Self-induced RNA switches (Hok/Soc, ...).
 - Inducable RNA switches (Riboswitches, RNA-thermometer, ...)
- 2 RNA/DNA based computation and nanotechnology
 - Molecular Motors.
 - Logical Gates.
 - Nano-object construction by algorithmic self-assambly.
- 3 Synthetic biology
 - post-transcriptional control devices.

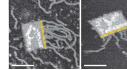
Transcriptional Attenuation

adapted from Yanofsky, C (2000) J Bacteriol 182(1):1-8


Hok/Sok – a cool natural self-induced swith


adapted from Gerdes, K & Wagner, EGH (2007) Curr Opin Microbiol 10:117-124


RNA Thermometer

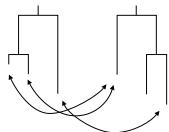

- Change structure in response to temperature changes.
- Gene regulation by masking the ribosome-binding site.
- Found in 5'-UTRs of bacterial heat shock and virulence genes.

Autonomous RNA polymerization motor

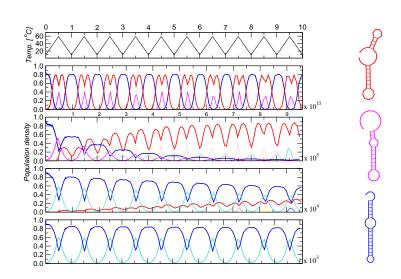
Basic Question

Howto handle different perturbations of the energy landscape within a **common framework**?

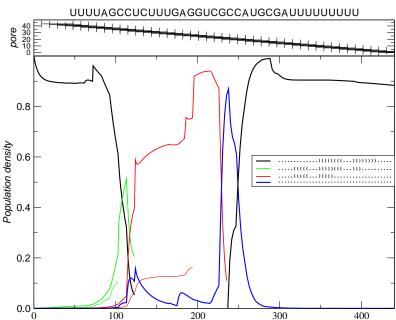
Idea:

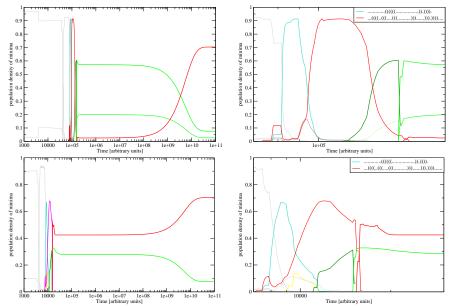

- 1 Compute a sequence of barrier trees.
- **2** Compute mapping between local minima of conscutive barrier trees $(x \to x' \to \text{gradient descent} \to x^*)$.
- 3 Simulate dynamics for a certain time on a barrier tree.
- 4 Map final population densities to successor barrier tree.

Cotranscriptional Folding


Each structure x at length n corresponds to an extended structure $x \bullet$ at length n+1.

For a minimum m, the correponding minimum m' can be found by a gradient walk starting with $m \bullet$.


- Two minima may be mapped to the same minimum in the n+1 landscape.
- In addition new minima may appear.


RNA thermometer: Hysteresis Effect

Melting a pore through RNA

Transciption attenuation: phe-AAS from E. coli

- Kinetic simulations on varying energy landscapes are possible.
- Far from simulating the "natural" state of affairs.
- Design and/or engineering of these processes is a future goal.

Acknowledgments

Ivo Hofacker Peter Stadler Michael Wolfinger