# 30<sup>th</sup> TBI Winterseminar Bled: Heuristic for Cograph Editing

#### Adrian Fritz

February 18, 2015

Based on the master thesis supervised by Dr. Marc Hellmuth

1

# Cographs

• Recursive definition (omitted)

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

## Cographs

- Recursive definition (omitted)
- A graph is a cograph if and only if it does not contain an induced  $P_4$  [1]



[1] Lerchs, Burlingham, Stewart: "Complement reducible graphs" (Discrete Applied Mathematics, 1981)

## Cographs

- Recursive definition (omitted)
- A graph is a cograph if and only if it does not contain an induced  $P_4$  [1]



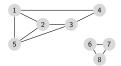
• Can uniquely be represented as a cotree

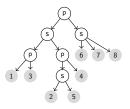
[1] Lerchs, Burlingham, Stewart: "Complement reducible graphs" (Discrete Applied Mathematics, 1981)

#### Cotree

• Leaves are vertices from the original graph, internal nodes are labelled s(eries) or p(arallel)

A Cograph and its corresponding Cotree





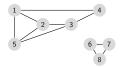
э

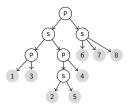
#### Cotree

- Leaves are vertices from the original graph, internal nodes are labelled s(eries) or p(arallel)
- Two nodes have an edge <u>if and only if</u> their LCA is a series node

6

A Cograph and its corresponding Cotree





ヘロト 人間ト ヘヨト ヘヨト

# Plan for Cograph-editing heuristic

7

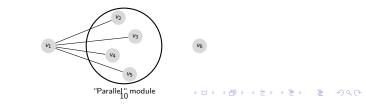
Plan for Cograph-editing heuristic

- Perform Modular Decomposition
- Ø Edit prime nodes in the Modular Decomposition tree
- Ograph-Editing: Return cograph G\* edited from graph G with as few as possible edge operations

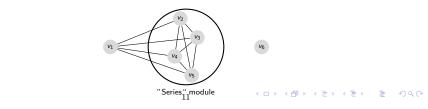
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Generalization of cotree concept to all graphs
- Internal nodes of the MD tree are so-called modules

- Generalization of cotree concept to all graphs
- Internal nodes of the MD tree are so-called modules
- Two vertices are in the same module if they have the same *outer* neighborhood
- Module type depends on the *inner* neighborhood
  - Inner neighborhood is a stable set: Parallel

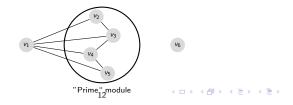


- Generalization of cotree concept to all graphs
- Internal nodes of the MD tree are so-called modules
- Two vertices are in the same module if they have the same *outer* neighborhood
- Module type depends on the *inner* neighborhood
  - Inner neighborhood is a stable set: Parallel
  - Inner neighborhood is a clique: Series

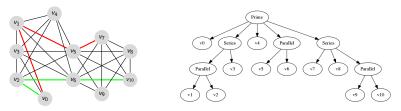


э

- Generalization of cotree concept to all graphs
- Internal nodes of the MD tree are so-called modules
- Two vertices are in the same module if they have the same *outer* neighborhood
- Module type depends on the *inner* neighborhood
  - Inner neighborhood is a stable set: Parallel
  - Inner neighborhood is a clique: Series
  - In the second second



# Modular Decomposition



Graph G with two marked  $P_4$ 's

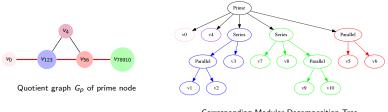
Corresponding Modular Decomposition Tree

#### • Why Modular Decomposition?

All induced  $P_4$ 's are entirely contained in prime modules<sup>[2]</sup> Hence: Edge operations have only to be performed on children of prime nodes

Heuristic

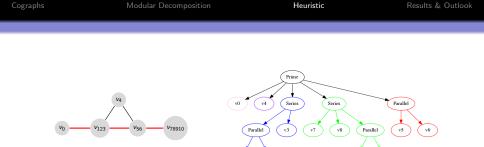
# Modular Decomposition



Corresponding Modular Decomposition Tree

#### • Why Modular Decomposition?

All induced  $P_4$ 's are entirely contained in prime modules<sup>[2]</sup> Hence: Edge operations have only to be performed on children of prime nodes



vl

v2

Quotient graph  $G_p$  of prime node

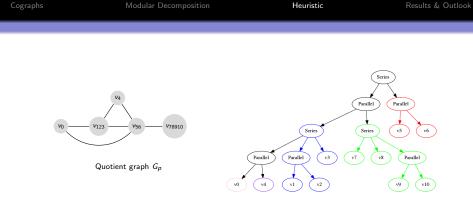
Corresponding Modular Decomposition Tree

v10

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

v9

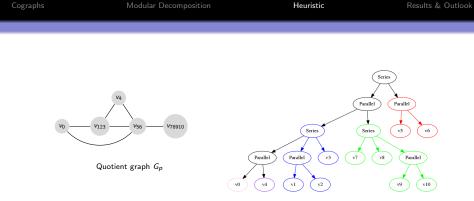
• Goal: Eliminate P<sub>4</sub>'s



- Goal: Eliminate P<sub>4</sub>'s
- Done by adding or deleting edges

ヘロト 人間ト 人団ト 人団ト

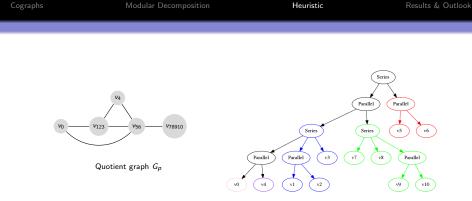
æ



- Goal: Eliminate P<sub>4</sub>'s
- Done by adding or deleting edges
- Which edges do we edit?

・ロト ・ 一 ト ・ モ ト ・ モ ト ・

э



- Goal: Eliminate P<sub>4</sub>'s
- Done by adding or deleting edges
- Which edges do we edit?
- Reformulation of the problem

ヘロト 人間ト ヘヨト ヘヨト

э

Heuristic

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

#### Edit MD tree to cotree

19

• Get rid of "unresolved" prime modules:

Edit MD tree to cotree

- Get rid of "unresolved" prime modules:
- Merge two children of prime module with similar neighborhood



Corresponding Modular Decomposition Tree

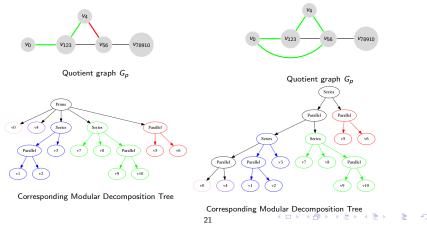
・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

3

Heuristic

Edit MD tree to cotree

- Get rid of "unresolved" prime modules:
- Merge two children of prime module with similar neighborhood



• Termination

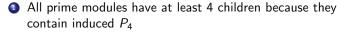


- Termination
  - All prime modules have at least 4 children because they contain induced P<sub>4</sub>
  - 2 By resolving, the number of children is reduced by at least 1
  - Solution For a prime module with n children, we need to merge at most n-3 times
  - Start with "lowest" one, propagate upwards
- Correctness

#### Termination

- All prime modules have at least 4 children because they contain induced  $P_4$
- **2** By resolving, the number of children is reduced by at least 1
- For a prime module with n children, we need to merge at most n-3 times
- Start with "lowest" one, propagate upwards
- Correctness
  - If no prime modules are left graph is cograph
  - Theorem: Merging can always find an optimal solution (proof: work in progress)

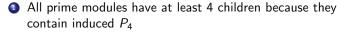
#### Termination



- **2** By resolving, the number of children is reduced by at least 1
- For a prime module with n children, we need to merge at most n-3 times
- Start with "lowest" one, propagate upwards
- Correctness
  - If no prime modules are left graph is cograph
  - Theorem: Merging can always find an optimal solution (proof: work in progress done!)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

#### Termination



- 2 By resolving, the number of children is reduced by at least 1
- For a prime module with n children, we need to merge at most n-3 times
- Start with "lowest" one, propagate upwards
- Correctness
  - If no prime modules are left graph is cograph
  - Theorem: Merging can always find an optimal solution (proof: work in progress done!)
- Which modules do we merge?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

#### Module Merging

- Greedy: Choose the two modules that are cheapest to merge
- $C_1 = |N[x] \triangle N[y]|$  for x, y in the two modules to merge

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

#### Module Merging

- Greedy: Choose the two modules that are cheapest to merge
- $C_1 = |N[x] \triangle N[y]|$  for x, y in the two modules to merge
- Greedy: Choose the two modules eliminating most  $P_4$ 's
- $C_2 = \#P_4$ 's in graph  $\#P_4$ 's in resolved graph

・ロ・・聞・・ ヨ・ ・ ヨ・ うぐう

#### Module Merging

- Greedy: Choose the two modules that are cheapest to merge
- $C_1 = |N[x] \triangle N[y]|$  for x, y in the two modules to merge
- Greedy: Choose the two modules eliminating most  $P_4$ 's
- $C_2 = \#P_4$ 's in graph  $\#P_4$ 's in resolved graph
- Combination of both:  $C = \frac{C_1}{C_2}$

#### Testing

#### • Compared results of heuristics against ILP

| Testset  | Avg. error | max error | max % | % perfect |
|----------|------------|-----------|-------|-----------|
| Co20_10  | 0.45       | 3         | 150   | 68        |
| Co20_20  | 0.8        | 6         | 40    | 63        |
| Co20_50  | 0.62       | 5         | 42.85 | 61        |
| Co50_10  | 1.8        | 10        | 41.18 | 40        |
| Co50_20  | 4.3        | 6         | 33.33 | 18        |
| Co50_50  | ?          | ?         | ?     | ?         |
| Co100_10 | ?          | ?         | ?     | ?         |
| Co100_20 | ?          | ?         | ?     | ?         |
| Co100_50 | ?          | ?         | ?     | ?         |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Outlook & To-Do

Complete some proofs

#### Outlook & To-Do

- Complete some proofs
- Increase performance and efficiency

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

#### Outlook & To-Do

- Complete some proofs
- Increase performance and efficiency
- Itesting with more data sets
  - Worst-cases and possible solutions
  - Biological data (Artificial Life Framework)

# Thank you

34

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

#### Testing

- Biological data are "noisy" cographs
- Create cograph, randomly add (or remove) some edges

| Testset  | V   | E  (avg.) | % changed | size |
|----------|-----|-----------|-----------|------|
| Co20_10  | 20  | 147.5     | 10        | 100  |
| Co20_20  | 20  | 150.9     | 20        | 100  |
| Co20_50  | 20  | 162.9     | 50        | 100  |
| Co50_10  | 50  | 1007.9    | 10        | 100  |
| Co50_20  | 50  | 1030.2    | 20        | 100  |
| Co50_50  | 50  | 1080.0    | 50        | 100  |
| Co100_10 | 100 | 4132.3    | 10        | 100  |
| Co100_20 | 100 | 4175.6    | 20        | 100  |
| Co100_50 | 100 | 4397.5    | 50        | 100  |