Why should we care about cograph heuristics? Phylogenomics with paralogs

Marc Hellmuth

Faculty of Mathematics and Computer Science Saarland University, Germany

Joint work with: Nicolas Wieseke, Peter F Stadler, Martin Middendorf Maribel Hernandez Rosales (U Leipzig) Katherina Huber, Vincent Moulton (U East Anglia), Hans-Peter Lenhof (U Saarland), Marcus Lechner (U Marburg)

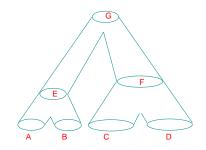
30TH TBI WINTERSEMINAR, BLED 2015

- 1. Phylogeny and Basics
- 2. Orthology, Paralogy and Gene Trees Cograph Editing
- 3. Inferring Species Trees
- 4. Results

Intro ●○ Orthologs, Paralogs & Characterization

ILP and Results

Phylogenetics

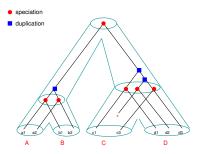


ILP and Results

Phylogenetics

- species are characterized by its genome: a "bag of genes"
- "Genes" evolve along a <u>rooted</u> tree
- unique event labeling $t: V^0 \to M = \{\bullet, \blacksquare\}$

two types of branching events:



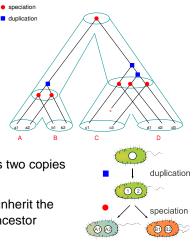
ILP and Results

Phylogenetics

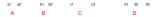
- species are characterized by its genome: a "bag of genes"
- "Genes" evolve along a <u>rooted</u> tree
- unique event labeling $t: V^0 \rightarrow M = \{\bullet, \blacksquare\}$

two types of branching events:

- 1. Gene duplication: an offspring has two copies of a single gene of its ancestor
- 2. Speciation: two offspring species inherit the entire genome of their common ancestor



The Problem in Practice

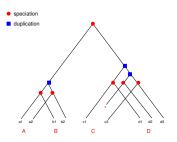


- Only the subset of leaves of the gene tree corresponding to genes in extant (currently living) species is observable.
- All internal nodes and the event labelling *t* in the gene tree must be inferred from data.
- The events and the topology of the gene tree can be used (under several constraints) to infer the species tree (Reconciliation)

Orthologs, Paralogs & Characterization

ILP and Results

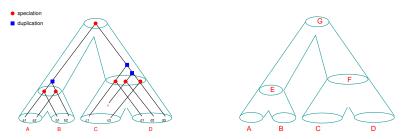
The Problem in Practice



- Only the subset of leaves of the gene tree corresponding to genes in extant (currently living) species is observable.
- All internal nodes and the event labelling *t* in the gene tree must be inferred from data.
- The events and the topology of the gene tree can be used (under several constraints) to infer the species tree (Reconciliation)

ILP and Results

The Problem in Practice



- Only the subset of leaves of the gene tree corresponding to genes in extant (currently living) species is observable.
- All internal nodes and the event labelling *t* in the gene tree must be inferred from data.
- The events and the topology of the gene tree can be used (under several constraints) to infer the species tree (Reconciliation)

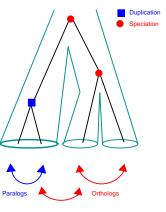
ILP and Results

Orthologs and Paralogs

Orthology and paralogy are important concepts in evolutionary biology and are defined in terms of the pair (T, t).

Two genes x and y are

- orthologs if
 t(lca(x,y)) = = speciation
- paralogs if t(lca(x,y)) = ■ =duplication



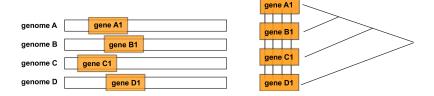
State-of-the-Art Tree Reconstruction

genome A	gen		ne A1		
genome B			gen	e B1	
genome C	gene C1		:1		
genome D			gene D1		

- Find 1:1-orthologs.
 - Paralogs = dangerous nuisance that has to be detected and removed.
 - Select families of genes that rarely exhibit duplications (e.g. rRNAs, ribosomal proteins)

ILP and Results

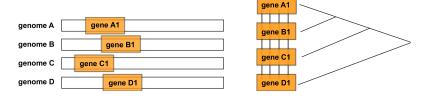
State-of-the-Art Tree Reconstruction



- Find 1:1-orthologs.
 - Paralogs = dangerous nuisance that has to be detected and removed.
 - Select families of genes that rarely exhibit duplications (e.g. rRNAs, ribosomal proteins)
- Alignments of protein or DNA sequences and standart techniques yield evolutionary history that is believed to be congruent to that of the respective species.

ILP and Results

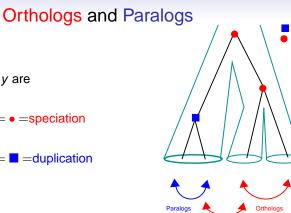
State-of-the-Art Tree Reconstruction



Pitfalls:

- The set of usable gene sets is strongly restricted ($\leq 10\%$).
- Information of evolutionary events as paralogs or xenologs is ignored.
- It is often mistakenly assumed that the orthology relation is transitive.

Duplication Speciation



Two genes x and y are

- orthologs if $t(lca(x, y)) = \bullet =$ speciation
- paralogs if t(lca(x, y)) = = duplication

orthology relation Θ can be estimated directly from the data, \implies without constructing either gene or species trees e.g. with ProtheinOrtho or its extension PoFF

ProteinOrtho: Detection of (Co)orthologs in large-scale analysis., Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ, BMC Bioinformatics, 2011

Estimating Θ directly from the data

The relation $\widehat{\Theta}$ is only an estimate of a "correct" orthology relation Θ .

- Aim: Correct initial estimate $\widehat{\Theta}$ to the "closest" orthology relation Θ that fits the data and build corresponding gene and species trees.
- \implies What is a "closest" orthology relation Θ ?

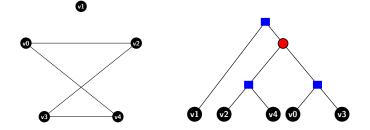
Characterization of Θ

Question: When does the initial estimate $\widehat{\Theta}$ fit the data?

Equivalently we can ask for a "symbolic representation":

For a given $\widehat{\Theta}$ when does there exist a tree *T* with event labeling *t* s.t.

- $t(lca(x,y)) = \bullet =$ *speciation* for all $(x,y) \in \widehat{\Theta}$ and
- t(lca(x,y)) = = duplication for all $(x,y) \notin \widehat{\Theta}$?



 $G_{\widehat{\Theta}}$ with edge set $\widehat{\Theta} = \{(v0, v2), (v0, v4), (v2, v3), (v3, v4)\}$

Characterization of Θ

Question: When does the initial estimate $\widehat{\Theta}$ fit the data?

Equivalently we can ask for a "symbolic representation":

For a given $\widehat{\Theta}$ when does there exist a tree T with event labeling t s.t.

- $t(lca(x,y)) = \bullet =$ *speciation* for all $(x,y) \in \widehat{\Theta}$ and
- t(lca(x,y)) = = duplication for all $(x,y) \notin \widehat{\Theta}$?

We used results by Böcker & Dress (1998) on "symbolic ultrametrics":

Theorem

The following conditions are equivalent

- There is a symbolic representation for $\widehat{\Theta}$.
- G_ô is a Cograph.

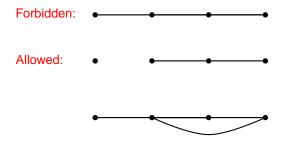
Recovering Symbolically Dated, Rooted Trees from Symbolic Ultrametrics, Böcker & Dress, Adv. Math., 1998

Orthology Relations, Symbolic Ultrametrics, and Cographs, Hellmuth M, H.-Rosales M, Huber K, Moulton V, Stadler PF, Wieseke N, J. Math. Biol., 2012

Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

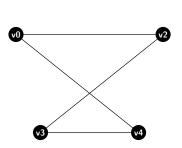
```
G is Cograph IFF G is "induced P<sub>4</sub>-free"
```



Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

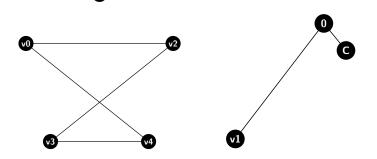
G is Cograph IFF G is "induced P₄-free"



Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

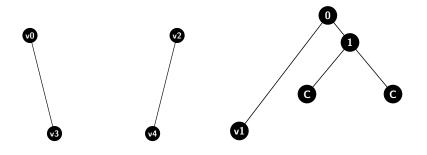
G is Cograph IFF G is "induced P₄-free"



Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

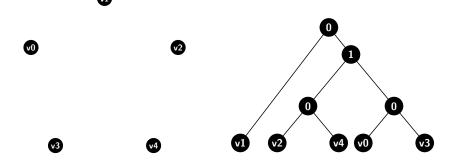
G is Cograph IFF G is "induced P₄-free"



Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

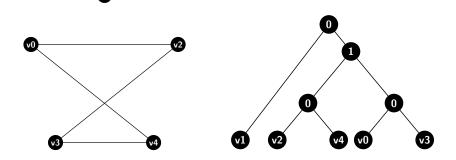
G is Cograph IFF G is "induced P₄-free"



Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

G is Cograph IFF G is "induced P₄-free"

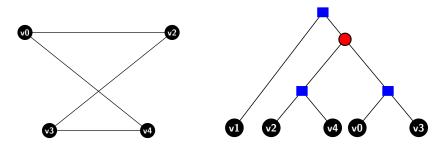


Corneil et al., 1981:

Cographs are defined recursively (Def. omitted)

G is Cograph IFF G is "induced P₄-free"

Every Cograph is associated with a unique Cotree.



 $(x,y)\in E(G)=\Theta$ if and only if lca(x,y)=1=ullet

Characterization of Θ

Idea: Correct the initial estimate $\widehat{\Theta}$ to the "closest" orthology relation Θ that fits the data.

Theorem

There is a symbolic representation (T, t) for $\widehat{\Theta} \iff G_{\widehat{\Theta}}$ is a Cograph.

There is a symbolic representation (T,t) for any symbolic relation (=colored graph G) \iff each monochromatic subgraph is a Cograph and on each triangle in G at most 2 colors are used.

Orthology Relations, Symbolic Ultrametrics, and Cographs, Hellmuth M, H.-Rosales M, Huber K, Moulton V, Stadler PF, Wieseke N, J. Math. Biol., 2012

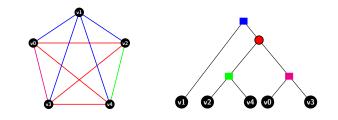
Characterization of Θ

Idea: Correct the initial estimate $\widehat{\Theta}$ to the "closest" orthology relation Θ that fits the data.

Theorem

There is a symbolic representation (T, t) for $\widehat{\Theta} \iff G_{\widehat{\Theta}}$ is a Cograph. There is a symbolic representation (T, t) for any symbolic relation

(=colored graph G) \iff each monochromatic subgraph is a Cograph and on each triangle in G at most 2 colors are used.

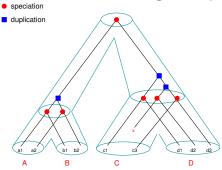


Orthology Relations, Symbolic Ultrametrics, and Cographs, Hellmuth M, H.-Rosales M, Huber K, Moulton V, Stadler PF, Wieseke N, J. Math. Biol., 2012

Orthologs, Paralogs & Characterization

ILP and Results

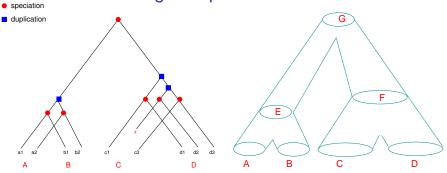
Finding the species trees



Orthologs, Paralogs & Characterization

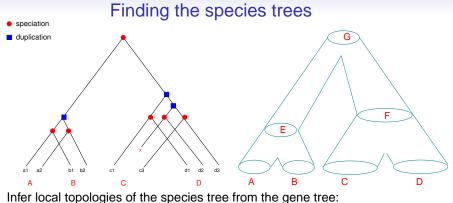
ILP and Results

Finding the species trees



Orthologs, Paralogs & Characterization

ILP and Results

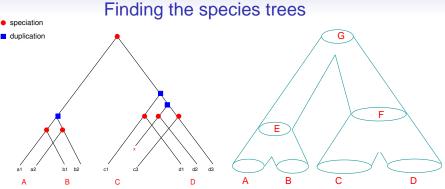


 $\mathbb{S} = \{ AB|C, AB|D, CD|A, CD|B \}$

From Event-Labeled Gene Trees to Species Trees., H.-Rosales M, Hellmuth M, Huber K, Moulton V, Wieseke N, Stadler PF, BMC Bioinformatics, 2012

Orthologs, Paralogs & Characterization

ILP and Results



Infer local topologies of the species tree from the gene tree: $\mathbb{S} = \{AB|C, AB|D, CD|A, CD|B\}$

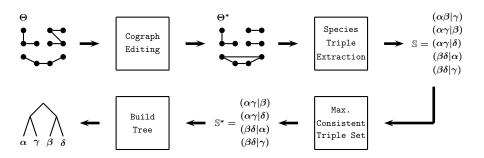
Theorem. Based on \$ it can be verified in polynomial time if there is a species tree where the gene tree can be embedded into.

If there is a species tree for the gene tree, the species tree & embedding can be computed in polynomial time.

From Event-Labeled Gene Trees to Species Trees., H.-Rosales M, Hellmuth M, Huber K, Moulton V, Wieseke N, Stadler PF, BMC Bioinformatics, 2012

ILP and Results

Workflow



We formulated all NP-hard problems (CE, MCT, LRT) as Integer Linear Program (ILP):

 $\min F(x)$ s.t. $Ax \leq b$

Phylogenomics with Paralogs, Hellmuth M, Wieseke N, Lechner M, Lenhof HP, Middendorf M, Stadler PF, PNAS, 2015

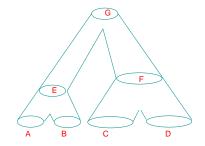
Results - Simulation

The entire worflow as ILP is implemented in the Software **ParaPhylo** using IBM ILOG CPLEX[™] Optimizer 12.6.

It is freely available from

pacosy.informatik.uni-leipzig.de/paraphylo

- generate binary species tree
- simulate dupl./loss/HGT history of gene sequences



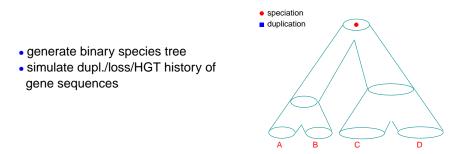
ALF-a simulation framework for genome evolution., Dalquen et al., Mol. Biol. Evol., 2012

Results - Simulation

The entire worflow as ILP is implemented in the Software **ParaPhylo** using IBM ILOG CPLEX[™] Optimizer 12.6.

It is freely available from

pacosy.informatik.uni-leipzig.de/paraphylo



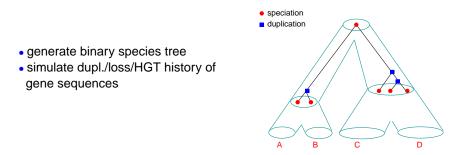
ALF-a simulation framework for genome evolution., Dalquen et al., Mol. Biol. Evol., 2012

Results - Simulation

The entire worflow as ILP is implemented in the Software **ParaPhylo** using IBM ILOG CPLEX[™] Optimizer 12.6.

It is freely available from

pacosy.informatik.uni-leipzig.de/paraphylo



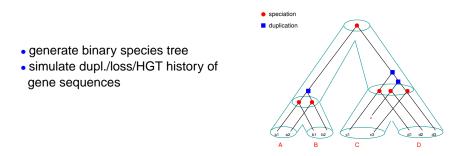
ALF-a simulation framework for genome evolution., Dalquen et al., Mol. Biol. Evol., 2012

Results - Simulation

The entire worflow as ILP is implemented in the Software **ParaPhylo** using IBM ILOG CPLEX[™] Optimizer 12.6.

It is freely available from

pacosy.informatik.uni-leipzig.de/paraphylo



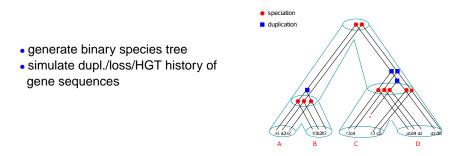
ALF-a simulation framework for genome evolution., Dalquen et al., Mol. Biol. Evol., 2012

Results - Simulation

The entire worflow as ILP is implemented in the Software **ParaPhylo** using IBM ILOG CPLEX[™] Optimizer 12.6.

It is freely available from

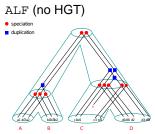
pacosy.informatik.uni-leipzig.de/paraphylo



ALF-a simulation framework for genome evolution., Dalquen et al., Mol. Biol. Evol., 2012

ILP and Results

Results - Simulation 1

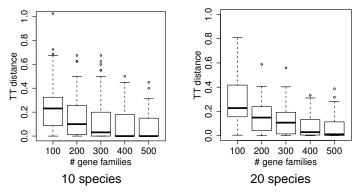


- \longrightarrow The cograph G_{Θ} is directly accessible
- \longrightarrow Compute cotree of G_{Θ}
- \longrightarrow Extract the species triples set \mathbb{S} (consistent)
- → Compute least resolved species tree and compare it with initial species tree

ILP and Results

Results - Simulation 1

Accuracy of reconstructed species trees as function of number of independent gene families:

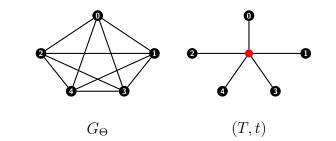


Simulation with ALF with duplication/loss rate 0.005 ($\sim 8\%$ duplications) and no HGT.

TT distance $\widehat{=}$ "num different triples in initial and reconstructed species tree"

Phylogenomics with Paralogs

In our model: $(x, y) \notin \Theta$ iff the distinct genes x and y are paralogs



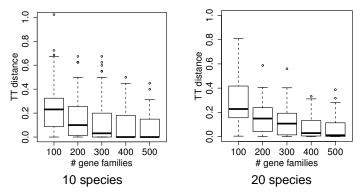
If \nexists paralogs $\rightarrow G_{\Theta}$ is a clique \rightarrow gene tree is a star \rightarrow no species triples can be inferred.

To obtain fully resolved species trees, a sufficient number of gene duplications must have occurred, since the phylogenetic information utilized by our approach is entirely contained in the duplication events.

ILP and Results

Results - Simulation 1

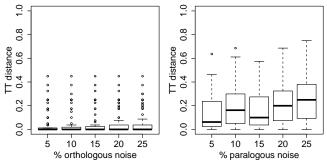
Accuracy of reconstructed species trees as function of number of independent gene families:



Average TT distance always smaller than 0.09 for more than 300 gene families, independent from the number of species.

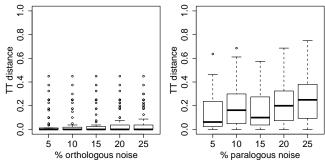
Deviations from perfect reconstructions are exclusively explained by a lack of perfect resolution.

Results - Simulation - Noise



- ALF (10 species and 1000 gene families) G_⊖ as before add noise
 start ILP-pipeline (CE→MCS→LRT).
- orthologous noise (overpredicting): flip paralogs with prob. p
- paralogous noise (underpredicting): flip orthologs with prob. p
- *p* ∈ [0.05, 0.25]

Results - Simulation - Noise



orthologous noise: additional edges in G_{Θ}

- \rightarrow G_{Θ} becomes more clique-alike
- → less species triples can be inferred and thus, less wrong species triples

paralogous noise:

remove edges from G_{Θ}

- $ightarrow G_{\Theta}$ becomes less clique-alike
- → more species triples can be inferred and thus, more more wrong species triples

Results - Runtime

Table: Running time in seconds on 2 Six-Core AMD Opteron[™] Processors with 2.6GHz for individual sub-tasks: **CE** cograph editing, **MCS** maximal consistent subset of triples, **LRT** least resolved tree.

Data	CE	MCS	LRT	Total ^a
Simulations ^b	125 ^c	< 1	< 1 ^d	126
Aquificales ^e	34	< 1	< 1 (6) ^g	34
Enterobacteriales ^f	2673	2	< 1 (1749) ^g	2676

^a Total time includes triple extraction, parsing input, and writing output files.

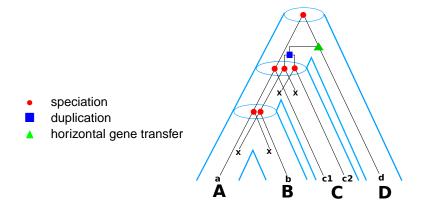
- ^b Average of 2000 simulations with ALF, 10 species, 1000 gene families.
 - 100 runs for each 4 noise models with different $p \in \{0.05, 0.1, 0.15, 0.2, 0.25\}$
- $^{\rm c}$ 2,000,000 cographs, 41 not optimally solved within time limit of 30 min.
- $^{\rm d}$ In 95.95% of the simulations the LRT could be found using ${\tt BUILD}.$
- ^e 11 Aquificales species with 2887 gene families.
- ^f 19 Enterobacteriales species with 8308 gene families.

 $^{\rm g}$ A unique tree was obtained using $\tt BUILD.$ Second value indicates running time with ILP solving enforced.

ILP and Results

Horizontal gene transfer (HGT)

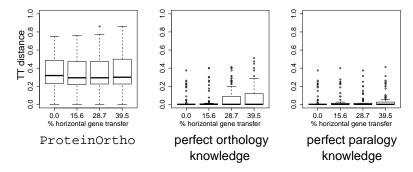
HGT refers to the transfer of genes between organisms in a manner other than traditional reproduction (sexual or asexual reproduction) and across different species (e.g. as in bacteria).



ILP and Results

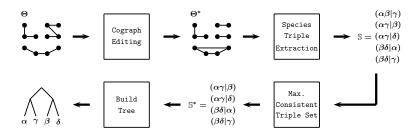
Horizontal gene transfer (HGT)

Dependence on the intensity of horizontal gene transfer:



ALF: 10 species, 1000 gene families, duplication/loss rate 0.005 and HGT rate ranging from 0.0 to 0.0075.

Conclusion

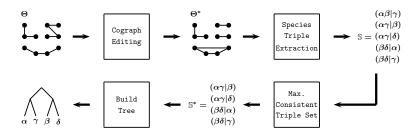


In "classical standart" approaches, paralogs are treated as a dangerous nuisance that has to be detected and removed.

However, paralogy is the key!

Summary of Results here: **Phylogenomics with Paralogs.** Hellmuth, Wieseke, Lechner, Lenhof, Middendorf, Stadler, <u>PNAS</u>, 2015

Conclusion



- 1. Improve orthology inference tools.
- 2. Develop paralogy inference tools.
- 3. Efficient heuristics for the cograph editing and least resolved tree P.
- 4. On parts in G_{Θ} that are cliques incorporate "classical" approaches.
- 5. Generalization of mathematical phylogenetic framework to deal exactly with *HGT* and with phylogenetic *networks*.

Intro 00 Orthologs, Paralogs & Characterization

ILP and Results

THANK YOU!

Symbolic Ultrametrics

The map $\delta: X \times X \to M^{\odot}$ is said to be a <u>symbolic ultrametric</u> (on *X*) if the following conditions are satisfied

(U0) $\delta(x, y) = \odot$ if and only if x = y.

(U1) $\delta(x,y) = \delta(y,x)$ for all $x, y \in X$.

(U2) $|\{\delta(x,y),\delta(x,z),\delta(y,z)\}| \le 2$ for all $x,y,z \in X$; and

(U3) there are no four pairwise distinct elements *x*, *y*, *u*, and *v* of *X* such that

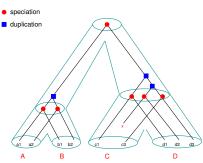
$$\delta(x,y) = \delta(y,u) = \delta(u,v) \neq \delta(y,v) = \delta(x,v) = \delta(x,u)$$

Note: every ultrametric induces a symbolic ultrametric.

Sketch: Estimating Θ directly from the Data

- We know the assignment of genes to species and we can measure similarity s(x, y) of two genes using sequence alignments and blast bit scores
- y ∈ B is a (putative) ortholog of x ∈ A, in symbols (x, y) ∈ Θ, if
 - A ≠ B, orthologs are never found in the same species
 - 2. $s(x,y) \approx \max_{z \in B} s(x,z)$,

if x and y are orthologs, then they do not have (much) closer relatives in the two species.



The relation $\widehat{\Theta}$ is only an estimate of a "correct" orthology relation: $(x, y) \in \Theta$ iff $t(x, y) = \bullet =$ speciation

ILP - Cograph Editing

$$\min \sum_{(x,y) \in \mathfrak{G} \times \mathfrak{G}} (1 - \Theta_{xy}) E_{xy} + \sum_{(x,y) \in \mathfrak{G} \times \mathfrak{G}} \Theta_{xy} (1 - E_{xy})$$

$$E_{xy} = 0$$
 for all $x, y \in \mathfrak{G}$ with $\sigma(x) = \sigma(y)$

$$\begin{aligned} & E_{wx} + E_{xy} + E_{yz} - E_{xz} - E_{wy} - E_{wz} \leq 2 \\ & \forall \text{ ordered tuples } (w, x, y, z) \text{ of distinct } w, x, y, z \in \mathfrak{G} \end{aligned}$$

This requires, $O(|\mathfrak{G}|^2)$ binary variables and $O(|\mathfrak{G}|^4)$ constraints; $\mathfrak{G}=$ gene set.

ILP and Results

ILP - Max. Consistent Triple Set

$$\begin{split} \max \sum_{(\alpha\beta|\gamma)\in\mathbb{S}} T'_{(\alpha\beta|\gamma)} \\ T'_{(\alpha\beta|\gamma)} + T'_{(\alpha\gamma|\beta)} + T'_{(\beta\gamma|\alpha)} &= 1 \\ 2T'_{(\alpha\beta|\gamma)} + 2T'_{(\alpha\delta|\beta)} - T'_{(\beta\delta|\gamma)} - T'_{(\alpha\delta|\gamma)} &\leq 2 \\ 0 &\leq T'_{(\alpha\beta|\gamma)} + T_{(\alpha\beta|\gamma)} - 2T^*_{(\alpha\beta|\gamma)} &\leq 1 \end{split}$$

Weighted version:

$$\max \sum_{(\alpha\beta|\gamma)\in\mathbb{S}} T'_{(\alpha\beta|\gamma)} \ast w(\alpha\beta|\gamma)$$

Rooted species triples: $T_{(\alpha\beta|\gamma)} = 1$ iff $(\alpha\beta|\gamma) \in \mathbb{S}$

 $\begin{array}{l} \text{Max. consistent subset } \mathbb{S}^* \subset \mathbb{S} \text{:} \\ \mathcal{T}^*_{(\alpha\beta|\gamma)} = 1 \text{ iff } (\alpha\beta|\gamma) \in \mathbb{S}^* \end{array}$

Auxiliary consistent strict dense species triples \mathbb{S}' with $\mathbb{S}^* \subseteq \mathbb{S}'$: $T'_{(\alpha\beta|\gamma)} = 1$ iff $(\alpha\beta|\gamma) \in \mathbb{S}'$

Thus maximizing $|S \cap S'|$ maximizes $|S^*|$ since $S^* = S \cap S'$

The ILP formulation that uses $O(|\mathfrak{S}|^3)$ variables and $O(|\mathfrak{S}|^4)$ constraints; \mathfrak{S} =species set.

Theorem

A strictly dense triple set R on L with $|L| \ge 3$ is consistent if and only if $cl(\tilde{R}) \subseteq R$ holds for all $\tilde{R} \subseteq R$ with $|\tilde{R}| = 2$.

ILP - Least Resolved Tree min $\sum_{p} Y_{p}$ Set of clusters $M_{\alpha\rho}$: $0 < Y_p |\mathfrak{S}| - \sum_{\alpha \in \mathfrak{S}} M_{\alpha p} < |\mathfrak{S}| - 1$ $0 \leq M_{\alpha p} + M_{\beta p} - 2N_{\alpha \beta, p} \leq 1$ $1-|\mathfrak{S}|(1-T^*_{(\alpha\beta|\gamma)}) \leq$ $\sum_{p} N_{\alpha\beta} P_{p} - \frac{1}{2} N_{\alpha\gamma} P_{p} - \frac{1}{2} N_{\beta\gamma} P_{p}$ $C_{p,q,01} \geq -M_{\alpha p} + M_{\alpha q}$ $C_{p,q,10} \geq M_{\alpha p} - M_{\alpha q}$ $C_{p,q,11} \geq M_{\alpha p} + M_{\alpha q} - 1$ $C_{p,q,01} + C_{p,q,10} + C_{p,q,11} \le 2 \forall p,q$

 $M_{\alpha\rho} = 1$ iff $\alpha \in \mathfrak{S}$ is contained in cluster $p \in \{1, \ldots, |\mathfrak{S}| - 2\}$.

Cluster p contains both species α and $\beta (N_{\alpha\beta})$: $N_{\alpha\beta}{}_{\rho} = 1$ iff $M_{\alpha\rho} = 1$ and $M_{\beta\rho} = 1$

Compatibility (3-gamete condition): $C_{p,q,\Gamma\Lambda} = 1$ iff cluster p and q have gamete $\Gamma \Lambda \in \{01, 10, 11\}$

Y_p Non-trivial clusters: $Y_{n}=1$ iff cluster $p \neq \emptyset$.

This requires $O(|\mathfrak{S}|^3)$ variables and constraints; $\mathfrak{S} =$ species set. "partial" hierarchy: for p and q holds $p \cap q \in \{p, q, \emptyset\}$. (p, q compatible) p and q are incompatible if there are (not necessarily distinct) species $\alpha, \beta, \gamma \in \mathfrak{S}$ with $\alpha \in p \setminus q$ and $\beta \in q \setminus p$, and $\gamma \in p \cap q$. Then $(M_{\alpha\rho}, M_{\alpha q}) = (1, 0), (M_{\beta\rho}, M_{\beta q}) = (0, 1), (M_{\gamma\rho}, M_{\gamma q}) = (1, 1).$

ILP and Results

Results

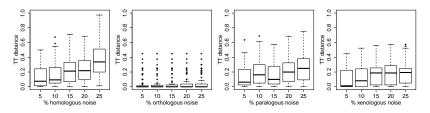
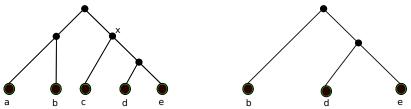


Figure: Accuracy of reconstructed species trees as function of noise level (p = 5 - 25%) and noise type in the raw orthology data Θ . Tree distance is measured by the triple metric (TT) for 100 reconstructed phylogenetic trees with ten species.



For three leaves a, b, c in T we write ab|c if the path from a to b does not intersect the path from c to the root.

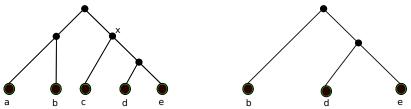
Right Tree:

 $\mathscr{R}(T) = \{ de | b \}$

Left Tree:

 $\mathscr{R}(\mathcal{T}) = \{ab|c, ab|d, ab|e, de|a, de|b, de|c, cd|a, cd|b, ce|a, ce|b\}$

ILP and Results



For three leaves a, b, c in T we write ab|c if the path from a to b does not intersect the path from c to the root.

Right Tree:

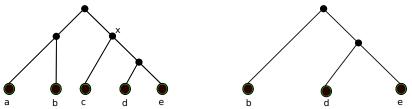
 $\mathscr{R}(T) = \{ de | b \}$

Left Tree:

 $\mathscr{R}(\mathcal{T}) = \{ ab|c, ab|d, ab|e, de|a, de|b, de|c, cd|a, cd|b, ce|a, ce|b \}$

An arbitrary set of triples \mathscr{R} is consistent, if there is a tree that displays all triples in \mathscr{R}

Exmpl: $\mathscr{R}(T)$ is consistent. $\mathscr{R}(T) \cup \{eb|d\}$ is not consistent.



For three leaves a, b, c in T we write ab|c if the path from a to b does not intersect the path from c to the root.

Right Tree:

 $\mathscr{R}(T) = \{ de | b \}$

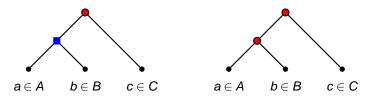
Left Tree:

 $\mathscr{R}(T) = \{ab|c, ab|d, ab|e, de|a, de|b, de|c, cd|a, cd|b, ce|a, ce|b\}$

Theorem [Aho, Sagiv, Szymanski, Ullman - 1981, Semple & Steel - 2003] There is a polynomial time algorithm – called BUILD – that constructs a tree for a given set of triples \mathscr{R} or recognizes \mathscr{R} as inconsistent.

ILP and Results

Triples for inferring the species tree



Given an event-labeled gene tree (T, t) and $ab|c \in \mathscr{R}(T)$. We write $ab|c^{\bullet}$ if

$$t(lca(a,b,c)) = \bullet = "speciation"$$

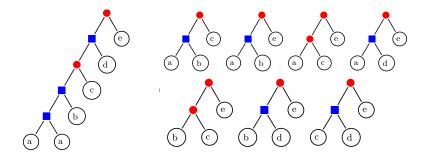
We know the assignment of genes to the species in which they occur. This gives us the triple set:

$$\mathbb{S} = \{ (\mathsf{AB} | \mathsf{C} : \exists \mathsf{ab} | \mathsf{c}^{\bullet} \text{ with } \mathsf{a} \in \mathsf{A}, \mathsf{b} \in \mathsf{B}, \mathsf{c} \in \mathsf{C} \} \}$$

ILP and Results

Triples for inferring the species tree

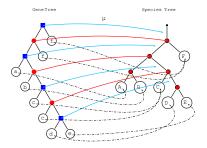
 $\mathbb{S} = \{ (\mathsf{AB} | \mathsf{C} : \exists \mathsf{ab} | \mathsf{c}^{\bullet} \text{ with } \mathsf{a} \in \mathsf{A}, \mathsf{b} \in \mathsf{B}, \mathsf{c} \in \mathsf{C} \} \}$



 $\mathbb{S} = \{ \mathsf{AB} | \mathsf{C}, \mathsf{AB} | \mathsf{E}, \mathsf{AC} | \mathsf{E}, \mathsf{AD} | \mathsf{E}, \mathsf{BC} | \mathsf{E}, \mathsf{BD} | \mathsf{E}, \mathsf{CD} | \mathsf{E} \}$

Triples for inferring the species tree

 $\mathbb{S} = \{ (AB|C : \exists ab|c^{\bullet} \text{ with } a \in A, b \in B, c \in C \} \}$



Theorem

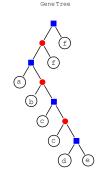
There is a species tree for the gene tree (T, t), i.e., for the symbolic representation of $\Theta \iff$ the triple set \mathbb{S} is consistent.

A reconciliation map μ from (T, t) to the species tree S can be constructed in polynomial time.

From Event-Labeled Gene Trees to Species Trees., H.-Rosales M, Hellmuth M, Huber K, Moulton V, Wieseke N, Stadler PF, BMC Bioinformatics, 2012

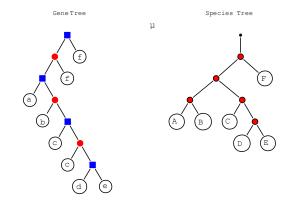
Inferring the Species Tree in $O(|\mathfrak{G}||\mathfrak{S}|)$ time

Given:Gene tree (T,t) = ((V,E),t),
Consistent triple set \mathbb{S} Gene set $\mathfrak{S} \subseteq V$ map $\sigma : \mathfrak{G} \to \mathfrak{S}$ from genes to its respective species.



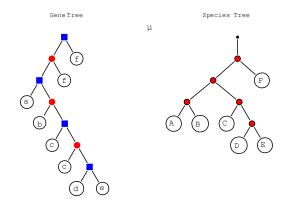
Inferring the Species Tree in $O(|\mathfrak{G}||\mathfrak{S}|)$ timeGiven:Gene tree (T,t) = ((V,E),t),
Consistent triple set \mathfrak{S} Gene set $\mathfrak{G} \subseteq V$
Species set \mathfrak{S}
map $\sigma : \mathfrak{G} \to \mathfrak{S}$ from genes to its respective species.

1. Construct a species tree S=(W,F) from S (e.g. with Build).



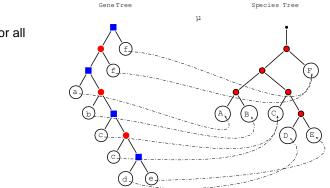
Inferring the Species Tree in $O(|\mathfrak{G}||\mathfrak{S}|)$ timeGiven:Gene tree (T,t) = ((V,E),t),
Consistent triple set \mathfrak{S} Gene set $\mathfrak{G} \subseteq V$
Species set \mathfrak{S}
map $\sigma : \mathfrak{G} \to \mathfrak{S}$ from genes to its respective species.

- 1. Construct a species tree S=(W,F) from S (e.g. with Build).
- **2**. Construct the reconciliation map $\mu : V \rightarrow W \cup F$ as follows:



Inferring the Species Tree in $O(|\mathfrak{G}||\mathfrak{S}|)$ timeGiven:Gene tree (T,t) = ((V,E),t),
Consistent triple set \mathbb{S} Gene set $\mathfrak{G} \subseteq V$
Species set \mathfrak{S}
map $\sigma : \mathfrak{G} \to \mathfrak{S}$ from genes to its respective species.

- 1. Construct a species tree S=(W,F) from S (e.g. with Build).
- **2**. Construct the reconciliation map $\mu : V \rightarrow W \cup F$ as follows:

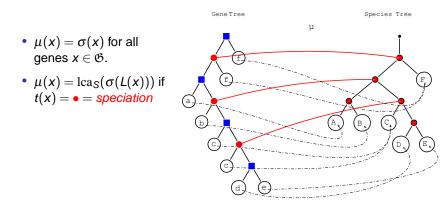


• $\mu(x) = \sigma(x)$ for all genes $x \in \mathfrak{G}$.

Inferring the Species Tree in $O(|\mathfrak{G}||\mathfrak{S}|)$ timeGiven:Gene tree (T,t) = ((V,E),t),
Consistent triple set \mathbb{S} Gene set $\mathfrak{G} \subseteq V$
Species set \mathfrak{S}

map $\sigma:\mathfrak{G}\to\mathfrak{S}$ from genes to its respective species.

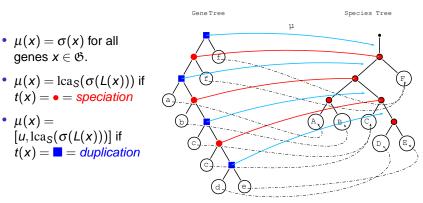
- 1. Construct a species tree S=(W,F) from S (e.g. with Build).
- **2**. Construct the reconciliation map $\mu : V \rightarrow W \cup F$ as follows:



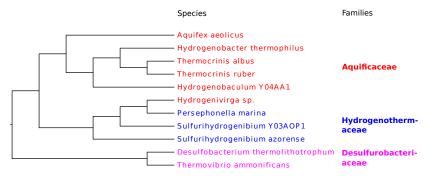
Inferring the Species Tree in $O(|\mathfrak{G}||\mathfrak{S}|)$ timeGiven:Gene tree (T,t) = ((V,E),t),
Consistent triple set \mathfrak{S} Gene set $\mathfrak{G} \subseteq V$
Species set \mathfrak{S}

map $\sigma:\mathfrak{G}\to\mathfrak{S}$ from genes to its respective species.

- 1. Construct a species tree S=(W,F) from S (e.g. with Build).
- 2. Construct the reconciliation map $\mu: V \to W \cup F$ as follows:



Results - Real Life Data



- Class of bacteria that live in harsh environmental settings, e.g., hot springs, sulfur pools, and thermal ocean vents.
- 11 Aquificales species with 2887 gene families (1372 3809 genes per species)
- ProteinOrtho \rightarrow ILP-pipeline (CE \rightarrow MCS \rightarrow LRT).