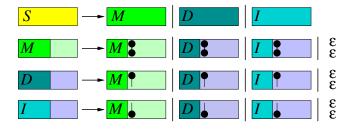
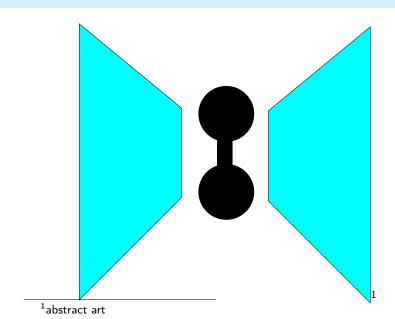
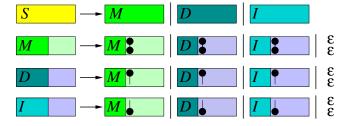
# Generalized Algebraic Dynamic Programming: ADP over General Data Structures Bled 2015


<u>Christian Höner zu Siederdissen</u> Sonja J. Prohaska Peter F. Stadler

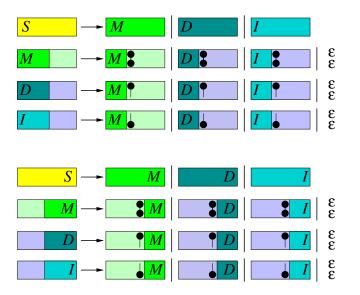
Bioinformatics Group, Dept. of Computer Science, University of Leipzig


Institute for Theoretical Chemistry, University of Vienna

The Church of

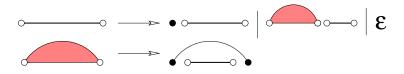

Feb 15, 2015 - Feb 22, 2015




#### Inside and Outside Combined



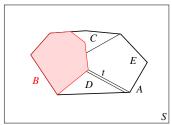
#### Outside Gotoh: Just Mirror the Grammar?



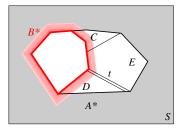

#### Outside Gotoh: Just Mirror the Grammar?



### Unfortunately only a Special Case


how would you mirror this RNA folding grammar?



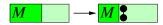

"mirroring" doesn't generalize!

#### Inside to Outside Productions

#### Inside



#### Outside




$$A \cup A^* = S$$

$$A \rightarrow BCDEt$$
 $B^* \rightarrow A^*CDEt$ 

$$C^* \rightarrow BA^*DEt$$





$$M_{i,j} \rightarrow M_{i-1,j-1} \left( egin{smallmatrix} u_i \\ v_j \end{smallmatrix} 
ight)$$

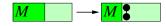


$$M_{i,j} \rightarrow M_{i-1,j-1} \left( egin{smallmatrix} u_i \\ v_j \end{smallmatrix} 
ight)$$



$$M_{i,j} \rightarrow M_{i-1,j-1} \left( \begin{smallmatrix} u_i \\ v_j \end{smallmatrix} \right)$$

$$M_{i-1,j-1}^* \rightarrow M_{i,j}^* \left( \begin{smallmatrix} u_i \\ v_j \end{smallmatrix} \right)$$


$$M \longrightarrow M$$

$$M_{i,j} \rightarrow M_{i-1,j-1} \left( egin{smallmatrix} u_i \ v_j \end{smallmatrix} 
ight)$$

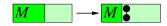
$$M_{i-1,j-1}^* \rightarrow M_{i,j}^* \left( \begin{smallmatrix} u_i \\ v_j \end{smallmatrix} \right)$$

rewrite indices: +1/+1

$$M_{i,j}^* \rightarrow M_{i+1,j+1}^* \begin{pmatrix} u_{i+1} \\ v_{j+1} \end{pmatrix}$$



$$M_{i,j} \rightarrow M_{i-1,j-1} \left( \begin{smallmatrix} u_i \\ v_j \end{smallmatrix} \right)$$

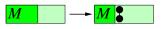

$$M \longrightarrow M$$

$$M \rightarrow M(\frac{u}{v})$$

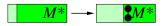
$$M_{i-1,j-1}^* \rightarrow M_{i,j}^* \left( \begin{smallmatrix} u_i \\ v_j \end{smallmatrix} \right)$$

rewrite indices: +1/+1

$$M_{i,j}^* \rightarrow M_{i+1,j+1}^* \begin{pmatrix} u_{i+1} \\ v_{i+1} \end{pmatrix}$$




$$M_{i,j} \rightarrow M_{i-1,j-1} \begin{pmatrix} u_i \\ v_j \end{pmatrix}$$


$$M_{i-1,j-1}^* \rightarrow M_{i,j}^* \left( \begin{smallmatrix} u_i \\ v_j \end{smallmatrix} \right)$$

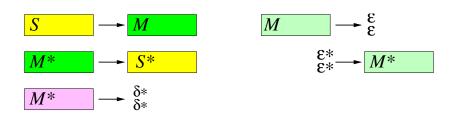
rewrite indices: +1/+1

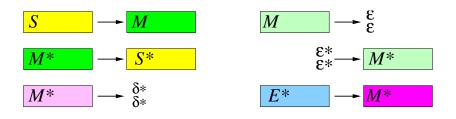
$$M_{i,j}^* \rightarrow M_{i+1,j+1}^* \begin{pmatrix} u_{i+1} \\ v_{j+1} \end{pmatrix}$$



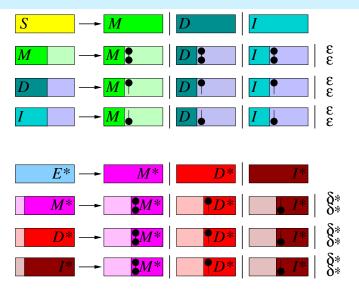
$$M \rightarrow M(\frac{u}{v})$$



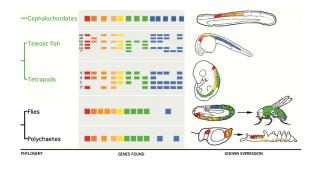

$$M^* \rightarrow M^*(\frac{u}{v})$$


no rewrite necessary, let ADPfusion figure it out

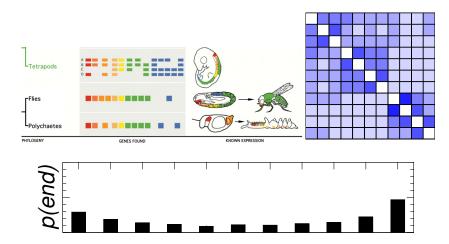




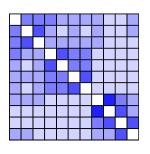






#### Inside & Outside Gotoh



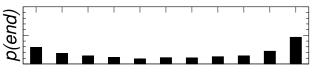

#### Hox Cluster History



# **Extracting Summary Information**



### Calculate Edge Probabilities




$$P(i \sim j) = \frac{1}{Z(S)} \sum_{p,q} \sum_{A \subset S} Z([p, A, i]) Z(\langle i, j \rangle) Z([j, S \setminus A, q]).$$

$$S_{p,q} o A_{p,q}$$
 $A_{p,q} o \varepsilon$ 
 $A_{p,q} o A_{p,k}(k,q)$ 

$$S o A_{p,i}(i,j) A_{j,q}^*$$
  $A_{p,q}$  as left  $A_{p,q}^*$  mechanically derived

#### Calculate End Probabilities



$$P(q ext{ is end}) = rac{1}{Z(S)} \sum_{p,A \in S} Z([p,A,q]).$$

$$egin{aligned} S_{p,q} & o A_{p,q} & S_i & o A_{p,i} \ A_{p,q} & o arepsilon & A_{p,q} & ext{as left} \ A_{p,q} & o A_{p,k}(k,q) \end{aligned}$$

#### Generalized ADP

Outside Grammars automatically derived from Inside grammars

Type-Rich DP index-type generic framework (with sequences and sets as examples)

- efficient algorithms as usual
- compatible with grammar products (grammars are objects)

Höner zu Siederdissen, Prohaska, Stadler. 2015 Algebraic Dynamic Programming over General Data Structures.

Hox figure:Building divergent body plans with similar genetic pathways; B J Swalla; Heredity