E-Learning in Bioinformatics

VS.

TMZ.com

What I find problematic ...

- 1.5h lectures too long
- mixed audience
- booooring ...
 - too elementary
 - same content every year

no time for discussion / deeper understanding

A possible solution

- Blended learning = mix presence + e-learning
- Flipped classroom
 - Lecture content via selfstudy
 - Lecture = discussion meeting

- Advantageous:
 - E-Learning modules + learning self control
 - Enforced proof of learning progress

Our E-Learning modules

- E-Learning modules
 - Content (slides, text, pics, video, …)
 - Self tests
 - Linking to additional material
- Usable for
 - Bachelor/Master courses
 - PhD specialization support
 - Promotion of **YOUR** algorithm

Example

😵 Nearest Neighbor Model and Zuker's algorithm

🚖 🚖 🚖 🔹 Actions 🔻

Content Table of Contents Print View Info Edit Page

Nearest Neighbor Model (2/2)

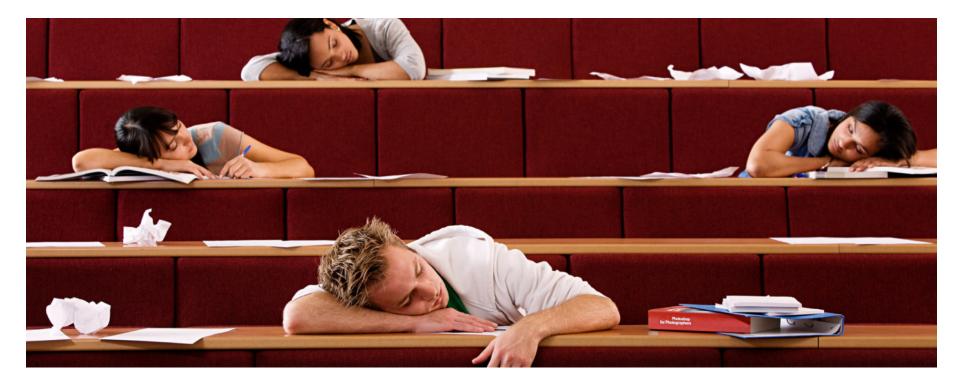
Bibliography 🕨

Zuker algorithm

The algorithm introduced by Michael Zuker and Patrick Stiegler (1981) computes the minimum free energy (mfe) structure for a given RNA sequence. It uses the nearest neighbor energy model and applies a dynamic programming scheme. The following material introduces the algorithm and additional information.

Introduction to Zuker algorithm

online-zuker.pdf (587.39 KB)


After studying the material from above, please use the following questions to test your understanding.

The minimum free energy for an RNA sequence of length n can be found in which Zuker matrix entry?

- \bigcirc $V_{1,n}$
- $\bigcirc V_{n,n}$
- $\bigcirc W_1$
- $\bigcirc W_n$
- $\bigcirc WM_{1,n}$
- $\bigcirc WM_{n,n}$
- Submit

What I would like to have ...

- Course = combination of "normal" lectures and flipped classroom events
- Collection of Bioinf E-Learning modules
- Public
- Collaboration + external contributions/use
 Contribution to our stuff
 - Access to external stuff

Thanks