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Our Thesis

* (Given a synthesis plan, automatically infer an
optimal DNA-templated program.

* Looking at one-pot synthesis from a computer
science point of view.

Towards an Optimal DNA-Templated Molecular Assembler
Jakob L. Andersen, Christoph Flamm, Martin M. Hanczyc, Daniel Merkle



DNA-Templated Synthesis
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Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions - McKee et al. 2012




Basic Notation

« Compound (uppercase), Tag (lowercase)

a b
3e—2 5 cJ S

e Strand: sequence of two tags

a b
5I 3 - — 3I 3I — 5I
a b

instruction release



Synthesis Plan

* A series of reactions
that produces a goal

compound. \. ./ \. ./

» Assumed to be a l l
binary tree. <§\ /@
B+ A —>E
C+D—-—>F l
E+F —> X



Synthesis Plan
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Motivating Example



Why is this hard”

In which order to perform the reactions?
Inheritance of tags and their position.
Avoliding side products and unwanted bindings.

Ditferent optimization goals.



Optimization Goals

* Program length
Fewer instructions but more distinct tags required.

* No. of tags
Fewer tags, at the cost of a longer program.

* No. of strands
Fewer distinct strands but not fewest tags.



Integer Linear Programming

* |nspired by liveness analysis from Compiler Theory.

* (Glven an arbitrary program, if two compounds or
two strands are alive at the same time, they must

be distinct.

e Solve such a program using an [LP model.



The Approach

Enumerate all the ways to traverse a plan.
Enumerate all the ways to construct a program.
Determine the interference between the tags.

Solve the interference constraints using |LP.



INnterference

minimize

S.t.

Tags should be unique.

If two strands are alive at the
same time, they should be
unigue.
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Example



Integer Linear Programming

* An easy way to generate all (or a subset of) optimal
programs for a synthesis plan.

* However, runs in exponential time and quickly
becomes impractical.



Tags on Compounds | Atomic | Toeholds | Fewest Tags Shortest Length

2 Yes No Polynomial Linear

2 Yes Yes Polynomial Linear

2 No No Not applicable | Not applicable

2 No Yes Not applicable | Not applicable
Arbitrary Yes No Polynomial Linear
Arbitrary Yes Yes Exponential Linear
Arbitrary No No Exponential Linear
Arbitrary No Yes Exponential Linear

k Yes No Polynomial Ezxponential

k Yes Yes Ezxponential Ezxponential

k No No Exponential Ezxponential

k No Yes Exponential Ezxponential




Two Tags on Compounds

* Jagging compounds is expensive!

* Reuse the same two tags (a and b) tor all the
compounds.
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Example



T'he Algorithm
F(node, a, b)

node.left, a,b)

F( l l
i — F(node.right,a + 1, b)

P

F l

node.right, a, b)
node.left,a,b+ 1)

max



Two Tags on Compounds

* A program with two tags on the compounds and
fewest tags overall.

 Runs in polynomial time.

On - h - h )

P N\~
nodes block a block b



Tags on Compounds | Atomic | Toeholds | Fewest Tags Shortest Length

2 Yes No Polynomial Linear

2 Yes Yes Polynomial Linear

2 No No Not applicable | Not applicable

2 No Yes Not applicable | Not applicable
Arbitrary Yes No Polynomial Linear
Arbitrary Yes Yes Exponential Linear
Arbitrary No No Exponential Linear
Arbitrary No Yes Exponential Linear

k Yes No Polynomial Ezxponential

k Yes Yes Ezxponential Ezxponential

k No No Exponential Ezxponential

k No Yes Exponential Ezxponential




Fewest Tags Without Atomicity

e Atomicity is required for Two Tags on Compounds.

 |et's remove the requirement!



Improved Protection
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Example



I'he Algorithm

F(node, strand, S) N

ab |\ / \ Y/
F(node.left, xy, S) Vxy a | yb| <

( 2d

F(node.right, zw, S U {xy}) Vzw l
(
(

min < > y l
F(node.right, zw, S) V2w
max <
\ | F(node.left,zy, SU{zw}) Vry
ab

,
max <«




I'he Algorithm

* A program with fewest tags overall.

* Runs in exponential time.

O( n log?n 28 . log?n )
Ve Ve VeV ad

nodes strands blocked inner work



I'he Algorithm

* A program with fewest tags overall.

* Runs in exponential time.

9

O( n log?n 28 . log?n )
Ve Ve VeV ad

nodes strands blocked inner work



Empirical Analysis

 Assume a program with 4 tags and 5 strands that is
solving a synthesis plan.

e A solution can be seen as a set of strands.

d
d
acC > C

C

ad 5




Strand Sets

e A solution can be seen as the set of strands used.

* Unlabelled connected loop-free digraphs with
#tags nodes and #strands edges.

CArdrdes
S 7de aiealdh

http://oeis.org/A052283


http://oeis.org/A052283

Strand Sets

e The number of strands that can be made with
tags Is
S| =t(t —1)

* The number of tags needed to create |S| strands is
then

teO(\/@)



Complete Binary Trees

e Can be solved with log(n) strands.
* [he strands are selected consecutively.

* The resulting program has an optimal number of
strands and an optimal number of tags.

=R




General Binary Trees

Fix strand setto S = {aX,bX,cX,dX,...}, |S| = log(n)
Register allocation in Expression Irees.
Shows that upper bound is log(n) + 1tags.

Approach optimal with regard to no. of strands, but
not necessarily with regard to no. of tags.



Comparison

W @y \P =% P
/D

= =

& &
4 strands 3 strands

3 tags 4 tags



Going Polynomial

e Brute force approach.

for t = +\/logn...logn+1 do
for |S| =logn...t(t —1) do
sets = select every combination from all (
for S € sets do
try to find solution using S
end for

end for
end for

t(t—1)

5| ) possible



Going Polynomial

* Optimistic brute force approach, based on
empirical analysis.

for t = y/logn...\/logn +1 do
for |S| =logn...t(t —1) do
sets = select every combination from all (
for S € sets do
try to find solution using S
end for

end for
end for
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Going Polynomial

* Optimistic brute force approach, based on
empirical analysis.

0 (1) 0 ((1og n)vlog")
for t = y/logn...\/logn +1 do 7
for |S| =logn...t(t —1) do /

sets = select every combination from all (t(|t§|1)) possible
for S € sets do
try to find solution using S
end for
end for

end for



Conclusion

* An |LP formulation for determining tags for programs.
 Known to be polynomial time:

« Programs of optimal length.

* Programs with two tags on compounds.

» Programs with fewest tags (for complete binary trees).

e Programs with fewest strands.

* "Empirically polynomial®:

* Programs with fewest tags.



