DNA-Templated
Computing

Bjarke Niemann Hansen
Alexel Mihalchuk

Daniel Merkle, Kim Skak Larsen, Christoph Flamm

Our Thesis

* (Given a synthesis plan, automatically infer an
optimal DNA-templated program.

* Looking at one-pot synthesis from a computer
science point of view.

Towards an Optimal DNA-Templated Molecular Assembler
Jakob L. Andersen, Christoph Flamm, Martin M. Hanczyc, Daniel Merkle

DNA-Templated Synthesis

ol e

template

s

o LT
Tn,m

ALY
EE———)

A
!C 1! release
_) s
— T 7
N
HNj\h
O™ "NH
Wnoxide . (2 WmR2-R1
o b

Tn,m

EEE—)

' R

+

s

>
template q
/3
>

—
To,m

Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions - McKee et al. 2012

Basic Notation

« Compound (uppercase), Tag (lowercase)

a b
3e—2 5 cJ S

e Strand: sequence of two tags

a b
5I 3 - — 3I 3I — 5I
a b

instruction release

Synthesis Plan

* A series of reactions
that produces a goal

compound. \. ./ \. ./

» Assumed to be a l l
binary tree. <§\ /@
B+ A —>E
C+D—-—>F l
E+F —> X

Synthesis Plan

Basic Requirements

 [TwO compounds |

present in the pot at the —)

same time must have a j J\
distinct tag.
» Two strands present in e * Nt _°
. O ———————
the pot at the same time a b

must differ in at least
one of their tags.

Basic Requirements

 [wo compounds . |

present in the pot at the —)

same time must have a j I
distinct tag. ‘
» Two strands present in e N b
. O ———————
the pot at the same time a :
must differ in at least F

one of their tags. Sy

Basic Requirements

 [wo compounds . |

present in the pot at the —)

same time must have a j J\
distinct tag.
* [wo strands present In e Nt __°
: e ——————
the pot at the same time a b

must differ in at least oo -
one of their tags.

Motivating Example

Why is this hard”

In which order to perform the reactions?
Inheritance of tags and their position.
Avoliding side products and unwanted bindings.

Ditferent optimization goals.

Optimization Goals

* Program length
Fewer instructions but more distinct tags required.

* No. of tags
Fewer tags, at the cost of a longer program.

* No. of strands
Fewer distinct strands but not fewest tags.

Integer Linear Programming

* |nspired by liveness analysis from Compiler Theory.

* (Glven an arbitrary program, if two compounds or
two strands are alive at the same time, they must

be distinct.

e Solve such a program using an [LP model.

The Approach

Enumerate all the ways to traverse a plan.
Enumerate all the ways to construct a program.
Determine the interference between the tags.

Solve the interference constraints using |LP.

INnterference

minimize

S.t.

Tags should be unique.

If two strands are alive at the
same time, they should be
unigue.

VieV

Vije E,NceeV
Vigkl € S,Yec eV
Vijkl € S,Vce V

VieV

Vi,VeeV

Example

Integer Linear Programming

* An easy way to generate all (or a subset of) optimal
programs for a synthesis plan.

* However, runs in exponential time and quickly
becomes impractical.

Tags on Compounds | Atomic | Toeholds | Fewest Tags Shortest Length

2 Yes No Polynomial Linear

2 Yes Yes Polynomial Linear

2 No No Not applicable | Not applicable

2 No Yes Not applicable | Not applicable
Arbitrary Yes No Polynomial Linear
Arbitrary Yes Yes Exponential Linear
Arbitrary No No Exponential Linear
Arbitrary No Yes Exponential Linear

k Yes No Polynomial Ezxponential

k Yes Yes Ezxponential Ezxponential

k No No Exponential Ezxponential

k No Yes Exponential Ezxponential

Two Tags on Compounds

* Jagging compounds is expensive!

* Reuse the same two tags (a and b) tor all the
compounds.

R @

RO

Atomicity

R @

RO

Atomicity

1
e
m
O
O
ra
|
Pro
te
C
t
O
N

.

1
e
m
O
O
ra
|
Pro
te
C
t
O
N

.

1
e
m
O
O
ra
|
Pro
te
C
t
O
N

1

1
e
m
O
O
ra
|
Pro
te
C
t
O
N

1

Example

T'he Algorithm
F(node, a, b)

node.left, a,b)

F(l l
i — F(node.right,a + 1, b)

P

F l

node.right, a, b)
node.left,a,b+ 1)

max

Two Tags on Compounds

* A program with two tags on the compounds and
fewest tags overall.

 Runs in polynomial time.

On - h - h)

P N\~
nodes block a block b

Tags on Compounds | Atomic | Toeholds | Fewest Tags Shortest Length

2 Yes No Polynomial Linear

2 Yes Yes Polynomial Linear

2 No No Not applicable | Not applicable

2 No Yes Not applicable | Not applicable
Arbitrary Yes No Polynomial Linear
Arbitrary Yes Yes Exponential Linear
Arbitrary No No Exponential Linear
Arbitrary No Yes Exponential Linear

k Yes No Polynomial Ezxponential

k Yes Yes Ezxponential Ezxponential

k No No Exponential Ezxponential

k No Yes Exponential Ezxponential

Fewest Tags Without Atomicity

e Atomicity is required for Two Tags on Compounds.

 |et's remove the requirement!

Improved Protection

I I l l ;
Cc\ e N
l l
/ G 3,

l e ———

C \ d

Example

I'he Algorithm

F(node, strand, S) N

ab |\ / \ Y/
F(node.left, xy, S) Vxy a | yb| <

(2d

F(node.right, zw, S U {xy}) Vzw l
(
(

min < > y l
F(node.right, zw, S) V2w
max <
\ | F(node.left,zy, SU{zw}) Vry
ab

,
max <«

I'he Algorithm

* A program with fewest tags overall.

* Runs in exponential time.

O(n log?n 28 . log?n)
Ve Ve VeV ad

nodes strands blocked inner work

I'he Algorithm

* A program with fewest tags overall.

* Runs in exponential time.

9

O(n log?n 28 . log?n)
Ve Ve VeV ad

nodes strands blocked inner work

Empirical Analysis

 Assume a program with 4 tags and 5 strands that is
solving a synthesis plan.

e A solution can be seen as a set of strands.

d
d
acC > C

C

ad 5

Strand Sets

e A solution can be seen as the set of strands used.

* Unlabelled connected loop-free digraphs with
#tags nodes and #strands edges.

CArdrdes
S 7de aiealdh

http://oeis.org/A052283

http://oeis.org/A052283

Strand Sets

e The number of strands that can be made with
tags Is
S| =t(t —1)

* The number of tags needed to create |S| strands is
then

teO(\/@)

Complete Binary Trees

e Can be solved with log(n) strands.
* [he strands are selected consecutively.

* The resulting program has an optimal number of
strands and an optimal number of tags.

=R

General Binary Trees

Fix strand setto S = {aX,bX,cX,dX,...}, |S| = log(n)
Register allocation in Expression Irees.
Shows that upper bound is log(n) + 1tags.

Approach optimal with regard to no. of strands, but
not necessarily with regard to no. of tags.

Comparison

W @y \P =% P
/D

= =

& &
4 strands 3 strands

3 tags 4 tags

Going Polynomial

e Brute force approach.

for t = +\/logn...logn+1 do
for |S| =logn...t(t —1) do
sets = select every combination from all (
for S € sets do
try to find solution using S
end for

end for
end for

t(t—1)

5|) possible

Going Polynomial

* Optimistic brute force approach, based on
empirical analysis.

for t = y/logn...\/logn +1 do
for |S| =logn...t(t —1) do
sets = select every combination from all (
for S € sets do
try to find solution using S
end for

end for
end for

t(t—1)

5|) possible

Going Polynomial

* Optimistic brute force approach, based on
empirical analysis.

0 (1) 0 ((1og n)vlog")
for t = y/logn...\/logn +1 do 7
for |S| =logn...t(t —1) do /

sets = select every combination from all (t(|t§|1)) possible
for S € sets do
try to find solution using S
end for
end for

end for

Conclusion

* An |LP formulation for determining tags for programs.
 Known to be polynomial time:

« Programs of optimal length.

* Programs with two tags on compounds.

» Programs with fewest tags (for complete binary trees).

e Programs with fewest strands.

* "Empirically polynomial®:

* Programs with fewest tags.

