DNA-Templated Computing

Bjarke Niemann Hansen Alexei Mihalchuk

Daniel Merkle, Kim Skak Larsen, Christoph Flamm

Our Thesis

- Given a synthesis plan, automatically infer an optimal DNA-templated program.
- Looking at one-pot synthesis from a computer science point of view.

Towards an Optimal DNA-Templated Molecular Assembler Jakob L. Andersen, Christoph Flamm, Martin M. Hanczyc, Daniel Merkle

DNA-Templated Synthesis

Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions - McKee et al. 2012

Basic Notation

• Compound (uppercase), Tag (lowercase)

• Strand: sequence of two tags

Synthesis Plan

- A series of reactions that produces a goal compound.
- Assumed to be a binary tree.

Basic Requirements

- Two compounds present in the pot at the same time must have a distinct tag.
- Two strands present in the pot at the same time must differ in at least one of their tags.

Basic Requirements

- Two compounds present in the pot at the same time must have a distinct tag.
- Two strands present in the pot at the same time must differ in at least one of their tags.

Basic Requirements

- Two compounds present in the pot at the same time must have a distinct tag.
- Two strands present in the pot at the same time must differ in at least one of their tags.

Motivating Example

Why is this hard?

- In which order to perform the reactions?
- Inheritance of tags and their position.
- Avoiding side products and unwanted bindings.
- Different optimization goals.

Optimization Goals

- Program length
 Fewer instructions but more distinct tags required.
- *No. of tags* Fewer tags, at the cost of a longer program.
- No. of strands
 Fewer distinct strands but not fewest tags.

Integer Linear Programming

- Inspired by liveness analysis from Compiler Theory.
- Given an arbitrary program, if two compounds or two strands are *alive* at the same time, they must be distinct.
- Solve such a program using an ILP model.

The Approach

- Enumerate all the ways to traverse a plan.
- Enumerate all the ways to construct a program.
- Determine the interference between the tags.
- Solve the interference constraints using ILP.

Interference

	minimize	y	
	s.t.	$\sum_{c} x_{ic} = 1$	$\forall i \in V$
Taga abould be unique		$x_{ic} + x_{jc} \le 1$	$\forall ij \in E, \forall c \in V$
lags should be unique.		$x_{ic} + x_{kc} \le 1 + z_{ijkl}$	$\forall ijkl \in S, \forall c \in V$
If two strands are alive at the		$x_{jc} + x_{lc} \le 1 + (1 - z_{ijkl})$	$\forall ijkl \in S, \forall c \in V$
same time, they should unique.	се	$\sum_{c} cx_{ic} \le y$	$\forall i \in V$
		$x_{ic} \in \{0, 1\}$	$\forall i, \forall c \in V$
		$y \ge 0$	

Integer Linear Programming

- An easy way to generate all (or a subset of) optimal programs for a synthesis plan.
- However, runs in exponential time and quickly becomes impractical.

Tags on Compounds	Atomic	Toeholds	Fewest Tags	Shortest Length
2	Yes	No	Polynomial	Linear
2	Yes	Yes	Polynomial	Linear
2	No	No	Not applicable	Not applicable
2	No	Yes	Not applicable	Not applicable
Arbitrary	Yes	No	Polynomial	Linear
Arbitrary	Yes	Yes	Exponential	Linear
Arbitrary	No	No	Exponential	Linear
Arbitrary	No	Yes	Exponential	Linear
k	Yes	No	Polynomial	Exponential
k	Yes	Yes	Exponential	Exponential
k	No	No	Exponential	Exponential
k	No	Yes	Exponential	Exponential

Two Tags on Compounds

- Tagging compounds is expensive!
- Reuse the same two tags (*a* and *b*) for all the compounds.

а

Two Tags on Compounds

- A program with two tags on the compounds and fewest tags overall.
- Runs in polynomial time.

$$O(n \cdot h \cdot h)$$

nodes block a block b

	loenoius	rewest lags	Shortest Length
3	No	Polynomial	Linear
3	Yes	Polynomial	Linear
,	No	Not applicable	Not applicable
,	Yes	Not applicable	Not applicable
3	No	Polynomial	Linear
3	Yes	Exponential	Linear
	No	Exponential	Linear
	Yes	Exponential	Linear
3	No	Polynomial	Exponential
3	Yes	Exponential	Exponential
	No	Exponential	Exponential
	Yes	Exponential	Exponential
	5 5 5 5 5 5 5 5 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9	s No s Yes No Yes No s Yes No yes s No s Yes No s Yes No yes	SNoPolynomialSYesPolynomialSYesPolynomialNoNot applicableSYesNot applicableSNoPolynomialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponentialSYesExponential

Fewest Tags Without Atomicity

- Atomicity is required for Two Tags on Compounds.
- Let's remove the requirement!

Improved Protection

- A program with fewest tags overall.
- Runs in exponential time.

 $O(n \cdot \log^2 n \cdot 2^{\log^2 n} \cdot \log^2 n)$

nodes strands blocked inner work

- A program with fewest tags overall.
- Runs in exponential time.

Empirical Analysis

- Assume a program with 4 tags and 5 strands that is solving a synthesis plan.
- A solution can be seen as a set of strands.

Strand Sets

- A solution can be seen as the set of strands used.
- Unlabelled connected loop-free digraphs with #tags nodes and #strands edges.

Strand Sets

The number of strands that can be made with t tags is

$$|S| = t(t-1)$$

• The number of tags needed to create |S| strands is then

$$t \in \mathcal{O}\left(\sqrt{|S|}\right)$$

Complete Binary Trees

- Can be solved with log(n) strands.
- The strands are selected consecutively.
- The resulting program has an optimal number of strands and an optimal number of tags.

General Binary Trees

- Fix strand set to $S = \{aX, bX, cX, dX, \ldots\}$, $|S| = \log(n)$
- Register allocation in Expression Trees.
- Shows that upper bound is log(n) + 1 tags.
- Approach optimal with regard to no. of strands, but not necessarily with regard to no. of tags.

Comparison

Going Polynomial

• Brute force approach.

for
$$t = \sqrt{\log n} \dots \log n + 1$$
 do
for $|S| = \log n \dots t(t-1)$ do
sets = select every combination from all $\binom{t(t-1)}{|S|}$ possible
for $S \in sets$ do
try to find solution using S
end for
end for
end for

Going Polynomial

• Optimistic brute force approach, based on empirical analysis.

for
$$t = \sqrt{\log n} \dots \sqrt{\log n} + 1$$
 do
for $|S| = \log n \dots t(t-1)$ do
sets = select every combination from all $\binom{t(t-1)}{|S|}$ possible
for $S \in sets$ do
try to find solution using S
end for
end for
end for

Going Polynomial

• Optimistic brute force approach, based on empirical analysis.

for
$$t = \sqrt{\log n} \dots \sqrt{\log n} + 1$$
 do
for $|S| = \log n \dots t(t-1)$ do
 $sets = select every combination from all \binom{t(t-1)}{|S|}$ possible
for $S \in sets$ do
try to find solution using S
end for
end for
end for

Conclusion

- An ILP formulation for determining tags for programs.
- Known to be polynomial time:
 - Programs of optimal length.
 - Programs with two tags on compounds.
 - Programs with fewest tags (for complete binary trees).
 - Programs with fewest strands.

- "Empirically polynomial":
 - Programs with fewest tags.