
DNA-Templated
Computing
Bjarke Niemann Hansen  

Alexei Mihalchuk

Daniel Merkle, Kim Skak Larsen, Christoph Flamm

Our Thesis
• Given a synthesis plan, automatically infer an

optimal DNA-templated program.

• Looking at one-pot synthesis from a computer
science point of view.

Towards an Optimal DNA-Templated Molecular Assembler
Jakob L. Andersen, Christoph Flamm, Martin M. Hanczyc, Daniel Merkle

DNA-Templated Synthesis

Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions - McKee et al. 2012

Basic Notation
• Compound (uppercase), Tag (lowercase)

• Strand: sequence of two tags

3' 5' 3' 5'

5' 3' 3' 5'

instruction release

Synthesis Plan
• A series of reactions

that produces a goal
compound.

• Assumed to be a
binary tree.

B + A -> E
C + D -> F
E + F -> X

Synthesis Plan

Basic Requirements
• Two compounds

present in the pot at the
same time must have a
distinct tag.

• Two strands present in
the pot at the same time
must differ in at least
one of their tags.

Basic Requirements
• Two compounds

present in the pot at the
same time must have a
distinct tag.

• Two strands present in
the pot at the same time
must differ in at least
one of their tags.

Basic Requirements
• Two compounds

present in the pot at the
same time must have a
distinct tag.

• Two strands present in
the pot at the same time
must differ in at least
one of their tags.

Motivating Example

Why is this hard?
• In which order to perform the reactions?

• Inheritance of tags and their position.

• Avoiding side products and unwanted bindings.

• Different optimization goals.

Optimization Goals
• Program length  

Fewer instructions but more distinct tags required.

• No. of tags 
Fewer tags, at the cost of a longer program.

• No. of strands  
Fewer distinct strands but not fewest tags.

Integer Linear Programming
• Inspired by liveness analysis from Compiler Theory.

• Given an arbitrary program, if two compounds or
two strands are alive at the same time, they must
be distinct.

• Solve such a program using an ILP model.

The Approach
• Enumerate all the ways to traverse a plan.

• Enumerate all the ways to construct a program.

• Determine the interference between the tags.

• Solve the interference constraints using ILP.

Interference

If two strands are alive at the
same time, they should be
unique.

Tags should be unique.

Example

Integer Linear Programming
• An easy way to generate all (or a subset of) optimal

programs for a synthesis plan.

• However, runs in exponential time and quickly
becomes impractical.

Two Tags on Compounds
• Tagging compounds is expensive!

• Reuse the same two tags (a and b) for all the
compounds.

Atomicity

+

+

Atomicity

+

+

Temporal Protection

Temporal Protection

Temporal Protection

Temporal Protection

Example

The Algorithm

Two Tags on Compounds
• A program with two tags on the compounds and

fewest tags overall.

• Runs in polynomial time.

• Atomicity is required for Two Tags on Compounds.

• Let's remove the requirement!

Fewest Tags Without Atomicity

Improved Protection

Example

The Algorithm

The Algorithm
• A program with fewest tags overall.

• Runs in exponential time.

The Algorithm
• A program with fewest tags overall.

• Runs in exponential time.

?

Empirical Analysis
• Assume a program with 4 tags and 5 strands that is

solving a synthesis plan.

• A solution can be seen as a set of strands.

ab  
ba  
ac
bc
ad

a

c

d

b

• A solution can be seen as the set of strands used.

• Unlabelled connected loop-free digraphs with
#tags nodes and #strands edges.

Strand Sets

http://oeis.org/A052283

http://oeis.org/A052283

Strand Sets
• The number of strands that can be made with t

tags is

• The number of tags needed to create |S| strands is
then

Complete Binary Trees
• Can be solved with strands.

• The strands are selected consecutively.

• The resulting program has an optimal number of
strands and an optimal number of tags.

6 12 20

General Binary Trees
• Fix strand set to ,

• Register allocation in Expression Trees.

• Shows that upper bound is tags.

• Approach optimal with regard to no. of strands, but
not necessarily with regard to no. of tags.

Comparison

4 strands
3 tags

3 strands
4 tags

Going Polynomial
• Brute force approach.

Going Polynomial
• Optimistic brute force approach, based on

empirical analysis.

Going Polynomial
• Optimistic brute force approach, based on

empirical analysis.

Conclusion
• An ILP formulation for determining tags for programs.

• Known to be polynomial time:

• Programs of optimal length.

• Programs with two tags on compounds.

• Programs with fewest tags (for complete binary trees).

• Programs with fewest strands.

• "Empirically polynomial":

• Programs with fewest tags.

