

Carbon Tracing in Chemical Reaction Networks

Jonas Nyrup

University of Southern Denmark

Outline

My thesis

How to model a metabolic network

EMU Model

Considerations

Complexity

Conclusion

My thesis

- Where can a specific carbon in substrates end up?
- Where could a specific carbon in products come from?
- Complexity questions

Extensions:

- For k specific carbons...
- Expand to probabilistic likelihood model
- Substrates with labeling distribution

Reaction network

Weitzel, Wiechert, and Nöh, 2007

Atom transition network

"What is the probability that a carbon is labeled?"

Weitzel, Wiechert, and Nöh, 2007

Isotopomer network

"What is the probability that a subset of carbons are labeled?"

Weitzel, Wiechert, and Nöh, 2007

Why not just use isotopomer model?

In the atom model the amount of information per molecule is n, where n is the carbon number. Why not just use isotopomer model?

- In the atom model the amount of information per molecule is n, where n is the carbon number.
- In the isotopomer model this number explodes into 2^n .

Why not just use isotopomer model?

- In the atom model the amount of information per molecule is n, where n is the carbon number.
- ▶ In the isotopomer model this number explodes into 2ⁿ.

From isotopomer distribution to positional label enrichment:

$$A = (8, \$, \$, \$) = (60\%, 25\%, 15\%, 0\%)$$

$$\downarrow$$

$$A_1 = \$ + \$ = 25\%$$

$$A_2 = \$ + \$ = 15\%$$

$$A_1 = 25\%$$

 $A_2 = 15\%$

Now what is the probability of **\$**?

$$A_1 = 25\%$$

 $A_2 = 15\%$

Now what is the probability of **\$**?

 $A_1 \cdot A_2 = 3.75 \,\%$

$$A_1 = 25\%$$

 $A_2 = 15\%$

Now what is the probability of **\$**?

 $A_1 \cdot A_2 = 3.75\%$

$$A_1 = 25\%$$

 $A_2 = 15\%$

Now what is the probability of \$?

 $A_1 \cdot A_2 = 3.75 \%$ A_1 and A_2 are not independent. Information is lost!

Here, we present a novel framework for the modeling of isotopic labeling systems that significantly reduces the number of system variables without any loss of information... We define an EMU of a compound to be a moiety comprising any distinct subset of the compound's atoms.

- \blacktriangleright The isotopomer model usually has $\sim\!10 x$ more information than needed.
- Find the minimal amount of information needed to simulate isotopic labeling.

Reaction network for EMU size 1

 $\begin{array}{cccc} B_3 + C_1 & \stackrel{V_5}{\longrightarrow} & D_{23} \\ & & v_2 \uparrow \downarrow v_3 \\ A_{23} & \stackrel{V_2}{\longrightarrow} & B_{23} \end{array}$

Reaction network for EMU size 3

Antoniewicz, Kelleher, and Stephanopoulos, 2007

Stoichiometry matrices for steady state

$$\begin{bmatrix} -v_4 & v_4 & 0 & 0 & 0 \\ 0 & -v_1 - v_3 & v_3 & 0 & 0 \\ 0 & v_2 & -v_2 - v_5 & v_5 & 0 \\ v_5 & 0 & 0 & v_2 & -v_2 - v_5 \end{bmatrix} \begin{bmatrix} C_1 \\ B_2 \\ D_2 \\ B_3 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -v_1 & 0 \\ 0 & 0 \\ 0 & -v_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_2 \\ A_3 \end{bmatrix}$$
$$\begin{bmatrix} -v_5 - v_2 & v_2 \\ v_3 & -v_1 - v_3 \end{bmatrix} \begin{bmatrix} D_{23} \\ B_{23} \end{bmatrix} = \begin{bmatrix} -v_5 & 0 \\ 0 & -v_1 \end{bmatrix} \begin{bmatrix} B_3 \times C_1 \\ A_{23} \end{bmatrix}$$
$$\begin{bmatrix} -v_6 & v_6 & 0 \\ 0 & -v_5 - v_2 & v_2 \\ 0 & v_3 & -v_1 - v_3 \end{bmatrix} \begin{bmatrix} F_{123} \\ D_{123} \\ B_{123} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -v_5 & 0 \\ 0 & -v_1 \end{bmatrix} \begin{bmatrix} B_{23} \times C_1 \\ A_{23} \end{bmatrix}$$

	EMU Model	Considerations	Conclusion

EXAMPLE

Limitations of the isotopomer model

Andersen et al., 2014

Limitations of the isotopomer model

Limitations of the isotopomer model

The fundamental p	roblem		
$egin{array}{c} A o B, B \ ab o a, b \end{array}$	\Rightarrow	2 <i>B</i> 1	

When backtracking from a B_1 , does it origin from A_1 or A_2 ?

The fundamental p	roblem		
A ightarrow B, Ba $b ightarrow a, b$	\Rightarrow	2 <i>B</i> 1	

When backtracking from a B_1 , does it origin from A_1 or A_2 ? Some sort of global labeling is missing, information is lost

<u>Could</u> be modelled with $2^n P(t, n) = \frac{2^n t!}{(t-n)!}$ states per molecule, where t is the sum of carbon numbers of all input substrates.

<u>Could</u> be modelled with $2^n P(t, n) = \frac{2^n t!}{(t-n)!}$ states per molecule, where t is the sum of carbon numbers of <u>all</u> input substrates.

False positives

Be aware of false positives (if they can exist?)

A can go to both C or D.

False positives

Be aware of false positives (if they can exist?)

A can go to both C or D.

 $B \operatorname{can} \operatorname{\underline{only}} go \operatorname{to} D$, so $A \operatorname{must} go \operatorname{to} C$.

Identity reactions

Identity reactions can be removed:

 $abcd \rightarrow abcd \rightarrow abdc \Rightarrow abcd \rightarrow abdc$

Automorphisms

Indistinguishable carbons, due to automorphisms:

(Bio)chemical equivalence

Name :	(2R,3R)-butane-1,2,3,4-tetraol	(2S,3R)-butane-1,2,3,4-tetrao (i.e. erythritol)
Symmetry :	Rotation axis	Center of inversion
C1 vs. C4 :	Chemically and biochemically equivalent	Chemically equivalent, but biochemically distinct

Antoniewicz, Kelleher, and Stephanopoulos, 2007

A digraph with infinite many non-simple paths.

A digraph with infinite many non-simple paths.

If we model reactions with permutations there are a finite number of non-simple paths before repeating itself.

A digraph with infinite many non-simple paths.

If we model reactions with permutations there are a finite number of non-simple paths before repeating itself.

$$r_{312} = r_3 r_1 r_2 = (1, 2, 5)(3, 4)$$

 $r_{312} = \text{lcm}(3, 2) = 6$

There are 6 ways to take the loop with distinct outcome.

Getting more complicated

Flow of computation

Generative chemistry

- Input: substrates, targets, reactions
- Output: reaction network
- E.g. derive all glycolysis pathways.
- Compute integer flow solution.
- Chemistry happens sequentially, use Petri nets to capture time aspect
- Do reachability analysis with Petri nets
 - If possible: A concurrency graph is returned
- Trace carbon in each concurrency graph

Conclusion

- Current models are lacking information about global labeling.
- By adding this, we can trace atoms through a reaction network.
- Improve simulation of real chemistry

References I

Michael Weitzel, Wolfgang Wiechert, and Katharina Nöh. "The topology of metabolic isotope labeling networks". In: <u>BMC Bioinformatics</u> 8.1 (2007), p. 315. DOI: 10.1186/1471-2105-8-315. URL:

http://dx.doi.org/10.1186/1471-2105-8-315.

Maciek R. Antoniewicz, Joanne K. Kelleher, and Gregory Stephanopoulos. "Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions". In: <u>Metabolic Engineering</u> 9.1 (Jan. 2007), pp. 68–86. DOI: 10.1016/j.ymben.2006.09.001. URL: http: //dx.doi.org/10.1016/j.ymben.2006.09.001.

References II

Jakob Lykke Andersen et al. "50 Shades of Rule Composition". In: Formal Methods in Macro-Biology. Springer Science + Business Media, 2014, pp. 117–135. DOI: 10.1007/978-3-319-10398-3_9. URL: http: //dx.doi.org/10.1007/978-3-319-10398-3_9.