SHAPE-Reactivity and RNA Structure

Winterseminar 2015

Roman Ochsenreiter, TBI

17.2.2015

Table of Contents

- Overview
 - RNA-Probing
 - SHAPE
 - RMDB
 - EteRNA
- 2 SHAPE Analysis
 - EteRNA Scores
 - Ensembles and Probing
 - Base-dependent Reactivity
 - Loop-Type and Reactivity

RNA Probing

Different methodological approches

Modification rates depend on local RNA structure

4 D > 4 A > 4 B > 4 B > B = 900

RNA Probing

Different methodological approches

Modification rates depend on local RNA structure

4 D > 4 A > 4 B > 4 B > B = 900

SHAPE

Investigating nucleotide flexibility

Selective 2'-Hydroxyl Acylation analyzed by Primer Extension

SHAPE

Why use SHAPE?

- Simple protocol
- Can be performed via high-throughput
- No intrinsically different reactivity of different bases
- Reactivity can be converted to Pseudo Free Energies for usage as folding constraints:

$$\Delta G_{SHAPE}(i) = m \ln(SHAPE \text{ reactivity}(i) + 1) + b$$

SHAPE - Databases

RMDB - Stanford RNA Mapping Database (> 100000 probing experiments)

- "High-troughput" sequence design by (many) hands
- Each design is scored by SHAPE-Probing
- Successful design rules are used for inverse folding algorithm
- EteRNA Score:

$$S_{EteRNA} = \frac{\sum_{i=1}^{N} \Delta}{N}, \quad \Delta egin{cases} 1 & ext{if } r_i > 0.25 ext{ (designed to be unpaired)} \\ 1 & ext{if } r_i < 0.5 ext{ (designed to be paired)} \\ 0 & ext{otherwise} \end{cases}$$

 r_i : Reactivity of Nucleotide i

Table of Contents

- Overview
 - RNA-Probing
 - SHAPE
 - RMDE
 - EteRNA
- SHAPE Analysis
 - EteRNA Scores
 - Ensembles and Probing
 - Base-dependent Reactivity
 - Loop-Type and Reactivity

Scoring EteRNA Scores

(Linear) Correlation of P(i is paired) vs. Reactivity(i)

- Interesting drop in correlation with lower EteRNA-Scores
- Change of temperature has no effect

Structural Ensembles and Probing

Equilibrium Population vs. Probing Quality

• Lower EteRNA-scores are correlated to low MFE population rates

Dominant structures

How well scores the dominant structure?

Base-dependent Reactivity

Reactivity of all 4 bases in different structural contexts:

Loop-Type and Reactivity

Reactivity of Nucleotides in all possible Loop-types:

Loop Type

Take-Home message

- Large amounts of SHAPE data sets are freely available
- Reactivity reflects more than just nucleotide flexibility also Loop-Types and Ensemble structures are important

Thanks to...

Ivo Hofacker
Christoph Flamm
Sven Findeiss
and
YOU for your attention!