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Analytical Systems
for Lite Sciences
at the time of Big Data
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\lotivation

How can analytical approaches exploit
iIncreasingly larger amount of
neterogeneous data to help scientific
Knowledge acquisition”?




Ihe nhuman in the loop

Ultimately researchers want analytical models In
order improve:

- understanding

- actionabllity

Note:
Interactive processing Is key
for human intuitions

Pearl, J. Causal inference in statistics: An overview. Stat. Surv. 2009



Data quantity
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Performance doubling time (in months):
cpu:18 disk:13 transfer:09 sequencing:05

cpu: Moore, Gordon E. 1965 Electronics

disk: Walter, Chip. 2005 Scientific American

transfer: Reynolds, Carson. 1998 ACM SIGCHI Bulletin
seq: Stein, Lincoln D. 2010 Genome Biology

Image from Stein, Lincoln D. 2010. Genome Biology 11 (b): 207.



Jata complexity

We can now know In high-throughput (and in vivo):

1. the identity of entire classes of biological entities

RNAs [RNA-Seq], proteins, peptides and metabolites [mass
spectrometry]

2. -~ and their relationships (Interactions)

prot-prot [yeast two-hybrid], prot-RNA [iICLIP], RNA-RNA [CLASH]

yeast two-hybrid: Luban, J. & Goff, S. P. Curr. Opin. Biotechnol. 1995
RNA-Seq: Wang, Z., et al. Nat. Rev. Genet. 2009

ICLIP: Huppertz, I. et al. Methods 2014

CLASH: Kudla, G., et al. PNAS 201 1



esjgerata

Given the data explosion in quantity and complexity
we need analytical systems that exhibit:

1. adaptive bias

2. efficiency <-> simplicity
computational viewpoint: efficiency

human viewpoint: simplicity (abstractions)



Approachnes

Instead of committing to a specific ML approach
connectionist approach vs symbolic approach vs Bayesian approach vs ---

generic computational approach

structured composition of parametrized objects that can do
certain classes of computations (in some consistent way) and
whose parametric configuration can be adapted (in some
useful way) to a context or a task

The driving design force should be efficiency coupled with
simplifying abstraction management not a specific computational

paradigm



Algebraic paradigm

Towards and ‘algebraic’ paradigm in ML

Bottou, L. From machine learning to machine reasoning. Mach. Learn. 2014

Algebra: collection of operations closed on a specific domain
Reasoning as computation, possibly of many kinds

Question: in order to develop general purpose analytical
systems for life sciences

1. which (flexible) domain (data type)?

2. which (few) operations?



Jomain
iterators ADT over graphs ADT
Advantages of graph formalism:
1. universal encoding
state of computation can be encoded in the graph itself
2. intuitive for humans

conceptual entities are nodes and relations are edges

nesting graphs can represent abstractions



~rocessing

ldeas from Generic Programming and Abstract Data Types:

abstract solutions to specific class of problems
- encapsulation/abstraction

- localization/interface

- flexibility/equivalence

l|deas from Functional Programming:
reterential transparency
compositionality



Generic
Computational Algebra

A H DN
2%

operation (iterable, program, priors, precond, postcond)

operation declares the abstract type of action/problem
program declares the algorithm for the solution

parameters_priors declares the user prior knowledge on
the program’s parameters’ space

precondition/postcondition declares the conditions to be
fulfilled on input/output for the pair (operation,program)
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(Generic operations

iterator over * > iterator over *

. convert: any type > graph

. associate: graph >any type

. partition: graphs > iterators over graphs

. decompose: graph > iterator over (sub)graphs
. compose: iterator over graphs > graph’

. transform: graph > graph’

order: graph > graph

. construct: graph > graphs’



Convert

- Ex: builld graph encoding from other data types

>ABQF01059171.1/305-384
UUGGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUGCUAAGCAAGGUCC
UGUAGUAUUGGCCUGAACCC

>AADN03003451.1/4511-4593
CUGGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUUGUAAAAUAGGUCC
UGUAGUAUUGGCCUGAUGAGCUC

>AAWZ02032198.1/15823-15741
UGAGGCCGUUACCUACAGCUGAUGAGCUCCAAAAAGAGCGAAACCUGUUAAAAUAGGUCC
UGUAGUAUUGGCCGACUGAGCCG

>AGAI01055016.1/63287-63205
UUAGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUUUUAAGAUAGGUCC
UGUAGUAUUGGCCUGAAAACCAU

>AANN01066007.1/588-511
CUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUGCUAGGUCCUGCAG
UACUGGCUUAAGAGGCUA

>AAQR03161315.1/4048-3972
UUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUAUUAGGUCCUGCAG
UACUGGCUUAAGAGAAU

>ABRN01375670.1/21703-21777
UUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUAUUAGGUCCUGCAG
UACUGGCUUGAGAUA




ASsoclate

Ex: supervised paradigm
discover which hypothesis are likely to improve
associlability (1.e. predictability)



“artition

o Ex: find structure in collections of instances



Jecompose

Ex: find structure in parts of instances



Compose

Ex: combine two or more instances into a
graph




- Ex: change representati

POSSIbly using previous

ranstorm

on (1)
y adapted systems



Order

- Ex: re-arrange the order of graphs based on
their representativeness
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Construct

- Ex: bulld data with desired properties

>ABQF01059171.1/305-384
UUGGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUGCUAAGCAAGGUCC
UGUAGUAUUGGCCUGAACCC

>AADN03003451.1/4511-4593
CUGGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUUGUAAAAUAGGUCC
UGUAGUAUUGGCCUGAUGAGCUC

®
®
d ® o %% o
®6 ® oo ® ...Q@.‘b.
® ® » o ¥y %
.o @ .' p ® e ®
¢ ® ® @®
®
® ® %
>A1
UUAGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUUUUAAGAUAGGUCC
UGUAGUAUUGGCCUGAAAACCAU
>A2
CUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUGCUAGGUCCUGCAG
UACUGGCUUAAGAGGCUA
>A3
UUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUAUUAGGUCCUGCAG
UACUGGCUUAAGAGAAU
>A4

UUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUAUUAGGUCCUGCAG
UACUGGCUUGAGAUA



1. Insta
with

Mmplementation

nces are encoded as weighted graphs
richly typed nodes and edges

(extension to hyper graphs is possible)

2. Effici

ent mapping procedure graphs [> vectors

traditional ML is directly applicable on resulting representation

3. Cata

0g of programs supporting proposed

INter

‘ace Implemented on top of 1. & 2.



Viapping support

Python library: EDeN

Explicit Decomposition with Neighbourhoods
evolution of NSPDK (Costa, De Grave ICML 2010)

. fast mapping: near linear complexity

. simple: exposes small/clear interface

scikit-learn style

. general purpose: heterogeneous graphs



e\

Explicit Decomposition with Neighbourhoods
pip Install git+https://github.com/fabriziocosta/EDeN.git

welghted graphs

with labels on nodes and edges




e\

Explicit Decomposition with Neighbourhoods
pip Install git+https://github.com/fabriziocosta/EDeN.git

labels can encode groups of reals as:

lists or dense vectors
dictionaries or sparse vectors

[0, 0; -1}~ X {O,nj,O.l, 0] {'A"1,'C": 38" 2}

(01,6, 0]

{'A": 1,}-A:"’E': 3 ‘D": 2}

{'A" 1, 'B' 2,'D" 3)



e\

Explicit Decomposition with Neighbourhoods
pip Install git+https://github.com/fabriziocosta/EDeN.git

graphs can be nested
a nesting edge Is a distinguishable type of edge

nesting edges can represent abstractions like:
part-of and Is_a



-mpirical run times
grapn to vector mapper

iINnstance mapping Is perfectly parallelizable
molecules: 5000 graphs x min x core

multi class prediction on RNA sequences

3GHz machine 8 cores (C++ optimization for sequences)
fit 1500 bacterial genomes: 8 min

predict metagenomic 32Mbases: 5 min

(allgnment based BLAST approaches take weeks on
large cluster centers)



Yend8nt

S'end8nt

variable length ~12 m

Application cases

assoclate, compose, construct
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Clustered regularly-interspaced short palindromic
repeats are segments of DNA containing short repetitions
followed by short segments of DNA from virus or plasmid

The CRISPR/Cas system is a prokaryotic immune system
and provides a form of acquired immunity


https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Bacteriophage
https://en.wikipedia.org/wiki/Plasmid
https://en.wikipedia.org/wiki/Immune_system
https://en.wikipedia.org/wiki/Acquired_immunity

CRISPR-strano

Alkhnbashi, O. S., F Costa, S A. Shah, R A. Garrett, S J. Saunders, R Backofen. Bioinformatics 2014

Prediction of the correct orientation (the strand) of the repeat array
Is Of interest to better define a family notion

Questions: which parts/characteristics are important > yield better
predictive performance

1. k initial nucleotides

2. mutation events

3. relative nucleotides positions and identity

S'end 8nt 3'end8nt

///\ /”/\

ariable length ~12 nt
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P R-strano

Alkhnbashi, O. S., F Costa, S A. Shah, R A. Garrett, S J. Saunders, R Backofen. Bioinformatics 2014

100 1

Biswas method
CRISPRstrand (our method)

90 A

80 A

70 1

Area under the ROC

60 -

50 -

< 65% < 75% < 85% < 95%
Similarities between training and test data

comparison with traditional method with few hand-crafted features



Compose

MRNA mRNA




MIRNA

MIRNA-RNA Interaction

micro RNA (abbreviated miRNA) is a ~22 nucleotides
non-coding RNA molecule which regulates post-
transcriptionally gene expression
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https://en.wikipedia.org/wiki/Oncomir

MRINA structure

iInteraction depends on accessibility of mMRNA

transtorm mRNA sequence to extract selt interacting structure

Nteraction site



MIRNA-MRNA duplex

iInteraction depends on duplex stability with miIRNA

compose folded mRNA with interacting miRNA
3 )




MRNA-RBF

Interaction depends on presence of RNA binding proteins (RBP)
that interact in the neighborhooa
transtorm folded mRNA with RBP predictor




Ul composite

finally since the interaction depends on all factors

compose duplex with RBP interaction
3 B 6




111

RNA-MRNA prediction

M. Uhl, F Costa, S J. Saunders, R Backofen (in preparation)

Precision Recall Curve
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Construct
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>A1
UUAGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUUUUAAGAUAGGUCC
UGUAGUAUUGGCCUGAAAACCAU
>ABQF01059171.1/305-384 >A2

CUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUGCUAGGUCCUGCAG
UACUGGCUUAAGAGGCUA

>A3
UUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUAUUAGGUCCUGCAG
UACUGGCUUAAGAGAAU

>A4
UUGAGCCGUUACCUGCAGCUGAUGAGCUCCAAAAAGAGCGAAACCUAUUAGGUCCUGCAG
UACUGGCUUGAGAUA

UUGGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUGCUAAGCAAGGUCC
UGUAGUAUUGGCCUGAACCC

>AADN03003451.1/4511-4593
CUGGGCCGUUACCUACAGCUGAUGAGCUCCAAGAAGAGCGAAACCUUGUAAAAUAGGUCC
UGUAGUAUUGGCCUGAUGAGCUC




RNA binding proteins are proteins that bind to
the double or single stranded RNA In cells and
participate in forming ribonucleoprotein
complexes

RBPs have crucial roles e.g. cellular function,
transport and localization




=BP binding validation

Ferrarese R, Harsh GR, Yadav AK, Bug E, Maticzka D, Reichardt W, Dombrowski
SM, Miller TE, Masilamani AP, Dai F, Kim H, Hadler M, Scholtens DM, Yu IL, Beck J,
Srinivasasainagendra V, Costa F, Baxan N, Pfeifer D, Elverfeldt DV, Backofen R,
Weyerbrock A, Duarte CW, He X, Prinz M, Chandler JP, Vogel H, Chakravarti A,
Rich JN, Carro MS, Bredel M, R. et al. J. Clin. Invest. 2014

- excess of PTB protein inhibits splicing > glioblastoma
(brain cancer) not repressed efticiently

- Identified splicing region with predicted but no experimental
evidence for PTB binding: how to validate these sites?

- cannot knock out/down PTB as it mediates many pathways
and would result in cell death
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3

2 pinding validation

Ferrarese, R. et al. J. Clin. Invest. 2014

- idea: inhibit PTB interaction in specific sites

- how: construct alternative sequences that inhibit PTB binding > do
prescribed mutations and look for reduction of aberrant splicing
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SuMmMINg up

Attempt to develop a vocabulary to describe complex analytical
processes at an useful abstract level as functional composition. E.g.

associate? (compose® ([transform®(convert (X)), transform?(X)]))

= SVM (RNAFold (X)+ RBP (X))

EDeN library provides support for efficient implementation of graph
to vector mapping > use of state-of-the-art ML libraries

GArDen (Generic Abstract Decomposition) library will provide
support for the generic computational framework and support for
- automatic parallelization and

- hyper parameter optimization



Conclusion

A new kind of (life) science is appearing:

not only study of nature, but simultaneous engineering using
avallable partial knowledge

with a growing need for computational tools to:

1. make sense of BIG and heterogeneous data

2. support causal relationships investigation

3. support rational synthesis design

There i1s a need to upgrade analytical
systems for the synthetic scientific era
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