how can machines learn protein engineering?

– one possible approach of machine learning concept to predict and improve enzyme activities.

winterseminar-Bled 2016-02-19

mark doerr university greifswald

before we start talking about enzymes, we should talk about RNA

RNA condensation and template directed extension reactions

work performed at University of Southern Denmark Odense (SDU) in **Steen Rasmussen**'s and **Pierre-Alain Monnard**'s group together with **Philipp M.G. Löffler** (main experimenter)

template-directed nucleotide condensation/ligation

(a) Primer extension with monomers

(b) Template directed ligation

condensation of RNA monomers

$M + M \rightarrow M-M + M \xrightarrow{n \text{ steps}} (M)_{2+n} + n H_2O$

In aqueous solution condensation reactions are **not** favored,

BUT the reverse reaction, DECOMPOSITION, is favored

Activation of monomers, compartmentalization and/or CATALYST (e.g. METAL ions, surface,....) are needed !

RNA self-replication in HOMOGENEOUS aqueous phase

Monomers template-directed polymerization

Orgel et al. (1980-1997)

Template with at least 60 % C Poly G efficiently formed

Consecutive AA (UU to be polymerized) Block (U too hydrophilic)

NO AMPLIFICATION POSSIBLE WITH MONOMERS

In case of (1)

(a)

Doerr, M.; M.G. Loffler, P.; Monnard, P.-A. Current Organic Synthesis 2012, 9 (6), 735–763.

Doerr, M.; M.G. Loffler, P.; Monnard, P.-A. Current Organic Synthesis 2012, 9 (6), 735–763.

Condensation of nucleotides (ImpU) on a template

Doerr, M.; M.G. Loffler, P.; Monnard, P.-A. Current Organic Synthesis 2012, 9 (6), 735–763.

temperature dependence of oligomerization

eutectic ice

primer extension experiment designs

2016-02-09

Löffler, P. M. G.; Groen, J.; Dörr, M.; Monnard, P.-A. PLoS ONE 2013, 8 (9),

13

RNA condensation and folding is just the beginning

let's increase complexity further

ASP-tRNA (PDB:1ASY) Proteins

transaminase (PDB:4CHI)

KEMP-eliminase reaction

scheme after Moroz et al., Angew. Chem. Int. Ed. Engl. 2013, 52, 6246-6249. spectrum: courtesy of Moritz Voß

challenges in protein design/engineering

- increased transformation rate of the substrate
- altered substrate spectrum (e.g. bigger/bulkier substrates)
- enhanced or altered stereo selectivity of the substrate/product
- educt / product tolerance
- usage cheaper cofactors
- higher stability to environmental conditions
- temperature tolerance
- pH tolerance
- organic solvents
- enzyme cascades / pathways to more advanced products (related: regulation of the protein expression level and or intermediate transformation rate)

how to engineer?

 rational engineering (if structure is known) molecular modeling, 3D structure alignments

(random) mutagenesis strategies
(error prone PCR, NNK libraries / CASTing)

• semi-rational approaches

3DM: Protein Super-family Platforms

Structure based alignments

Structural conserved residues get the same 3Dnumber because these residues have a similar role in the proteins

> slide from Henk-Jan Joosten (www.bio-prodict.nl)

rational design

requirements:

- knowledge about the protein structure (NMR / X-ray)
- certain rigidity of the structure

"simple" active site (AlleyCatK, PDB 1UPS) complex active site (Orn:αKG TA (PDB: 20AT)

active site modifications

- changes in residue size (e.g. Phe \rightarrow Ala)
- residue polarity (e.g. $Glu \rightarrow Gln$)
- removing loops pointing into the active site
- exchanging loops inside the active site, or in outer spheres

(random) mutagenesis strategies

how do we screen?

LARA robotic platform

the LARA movie

evolution of the KEMP-eliminase

Ivan Korendovych et al.

PDB 2M3S: Moroz et al., Angew. Chem. Int. Ed. Engl. 2013, 52, 6246-6249, courtesy of Moritz Voss

KEMP-eliminase reaction

scheme after Moroz et al., Angew. Chem. Int. Ed. Engl. 2013, 52, 6246-6249. spectrum: courtesy of Moritz Voß

KEMP-eliminase after 7 rounds of evolution (Alleycat)

PDB 2M3S: Moroz et al., Angew. Chem. Int. Ed. Engl. 2013, 52, 6246-6249, courtesy of Moritz Voss

examples of questions for machine learning

- 1) beneficial mutations?
- 2) correlated / interfering mutations ?
- 3) improvement of expression / folding ?
- 4) combination of two properties in one enzyme (e.g. selectivity and stability)

basis of current project:

BMC Biotechnology

Research article

Engineering proteinase K using machine learning and synthetic genes

Jun Liao¹, Manfred K Warmuth¹, Sridhar Govindarajan², Jon E Ness², Rebecca P Wang², Claes Gustafsson² and Jeremy Minshull^{*2}

Address: ¹Department of Computer Science, University of California, Santa Cruz, CA 95064 USA and ²DNA 2.0, 1430 O'Brien Drive, Suite E, Menlo Park, CA 94025, USA

Email: Jun Liao - liaojun@soe.ucsc.edu; Manfred K Warmuth - manfred@cse.ucsc.edu; Sridhar Govindarajan - sgovindarajan@dna20.com; Jon E Ness - sgovindarajan@dna20.com; Rebecca P Wang - rwang@dna20.com; Claes Gustafsson - cgustafsson@dna20.com; Jeremy Minshull* - jminshull@dna20.com

* Corresponding author

Basic machine learning tools: linear regressions like:

- ridge regression least absolute shrinkage and selection operator (Lasso)
- partial least square regression (PLSR)
- support vector machine regression (SVMR)
- linear programming support vector machine regression (LPSVMR)
- linear programming boosting regression (LPBoostR)
- matching loss regression (MR)
- one-norm regularization matching-loss regression (ORMR)

doi:10.1186/1472-6750-7-16

Open Access

BioMed Central

explorable sequence space (limitations)

microtiter plate based screening
10³ - 10⁴ variants per week
100 – 300 sequences

• µ-fluidics

ca. 10⁶ - 10⁸ per week, # sequences in the same range, but limited information on enzyme activity (a better yes-now answer)

future developments

μ-fluidics and chip based technologies will allow to combine **100 000 000** activities in the near future (ca. 3-5 years) several concepts are under development

acknowledgements

RNA polymerization crew

Pierre-Alain Monnard (SDU Odense) Philipp Löffler (SDU Odense)

machine Learning crew

Jan Oldenburg (Bachelor student, Uni Greifswald) Marc Hellmuth (Uni Greifswald) Stefan Born (TU Berlin)

de-novo protein crew

Ivan Korendovych (Syracuse, NY) Moritz Voß (PhD student) Caroline Nolten (Bachelor student)

group leader

Uwe Bornscheuer

financial support: DFG and federal state of Mecklenburg-Vorpommern and DFG

Thank you for your attention !

lara.uni-greifswald.de

tRNA and condon usage

- tRNA gene clustering
- tRNA concentration / abundance
- tRNA codon fidelity
- mRNA folding during translation
- tRNA modifications ("stress answer" ?)

nice review on that topic: Novoa, E. M.; Ribas de Pouplana, L. Trends in Genetics **2012**, 28 (11), 574–581.

dx.doi.org/10.1016/j.tig.2012.07.006