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▪ many new genomes sequenced in the past years 

▪ current number of genomes in the NCBI database:  

▪ 2,579 eukaryotic genomes 

▪ 57,070 prokaryotic genomes 

▪ Many studies target only one organism. 

▪ However, similar/same data for different organisms 
already now available. 

▪ In the next years, more studies between organisms 

▪ Problem: How to compare data from different 
genomes?

GENOMIC DATA
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CHROMOSOME MUTATIONS
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▪ creating a artificial “golden” genome that fulfill three 
conditions: 

1. is linear alignable to all contained genomes 

2. keep as much information as possible of all 
genomes 

3. has no redundancy 

▪ roughly represents ancestral genome 

▪ Starting point: local alignments 

▪ Use pre-computed genome alignments in multiple 
alignment format (MAF)

GOLDEN GENOME
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http://www.dict.cc/englisch-deutsch/fulfill.html


▪ One MAF-block is one local multiple alignment 

▪ Every MAF-block is one vertex in the graph. 

▪ Edges indicate the genomic order of the vertices for 
each species.  

▪ If MAF-block B is genomic successor of MAF-block A in 
species X then there is a directed edge from A to B with 
label X.

GRAPH GENERATION
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▪ create a linear order of the vertices (golden genome 
order) 

▪ keep most edges 

▪ Maximum Acyclic Subgraph (NP complete) 

▪ keep neighborhood where it is possible 

▪ Topological sorting

GOLDEN GENOME TASK
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▪ Transform multigraph in a weighted graph 

▪ Count edges between to vertices. 

▪ If at least one exists add edge to weighted graph with 
the number of edges between the vertices as weight 

▪ less edges in weighted graph, so many algorithm are 
faster 

▪ Different views on golden genom graph with different 
information. 

▪ Both have advantages

MULTIGRAPH VS. WEIGHTED GRAPH
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▪ vertex and edge count multigraph 

▪ edge count weighted graph 

▪ In-Degree and Out-Degree multigraph 

▪ In-Degree and Out-Degree weighted graph 

▪ Harmonic Centrality weighted graph 

▪ Betweenness Centrality weighted graph

HOW TO DESCRIBE THE GRAPHS
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▪ 2,112,962 vertices 

▪ 36,130,309 edges 

▪ 1 connected component

27 WAY INSECT
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▪ 2,112,962 vertices 

▪ 6,097,044 edges

27 WAY INSECT
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▪ reduce “noise” in the graph to make it easier to handle  
( i.e. finding conserved regions)  

▪ local inversions: remove simple cycles 

▪ “almost” long, local alignments: collapse co-linear chain 

▪ artificial sinks and sources due to incomplete genome 
sequences

REDUCER
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http://www.dict.cc/englisch-deutsch/easier.html
http://www.dict.cc/englisch-deutsch/handle.html


▪ local inversions lead to mini cycles 

▪ two adjacent vertices with edges in both directions 

▪ Handle every mini cycle by removing all edges in one 
directions  

MINI CYCLE REMOVAL
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MINI CYCLE REMOVAL
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▪ Delete the direction that: 

1. contains fewer edges 

2. is part of another cycle  

3. is not supported by alternative paths



▪ Sinks with one predecessor can be collapsed into the 
predecessor. 

▪ at most one neighborhood is destroyed 

▪ The same hold for a source with one successor. 

SINK AND SOURCE REMOVAL
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▪ “almost” long, local alignments: collapse  co-linear chain 

▪ If a vertex x has exactly one successor y and x is the 
only predecessor of y then the reducer is applied. 

▪ Combine these two vertices to one vertex

2 VERTEX REDUCER
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▪ Closed DAG: 

1. Subgraph that is a Directed Acyclic Graph  

2. No edges from the subgraph to remaining graph 
except to one source and from one sink of the 
subgraph. 

▪ Closed DAGs can be ordered independent from the rest 
of the graph. 

▪ In any order a closed DAG is placed as an atomic 
component.

CLOSED DAG REDUCER
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▪ every reduction can create new options for further 
reduction 

▪ all four reducers are applied until a fixed point is 
reached 

▪ running time of all reducers is O(|V|) 

▪ in the worst case the outer loop is repeated |V|-1 
times 

▪ in total O(|V|2) running time

REDUCER
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▪ Given a directed graph create the DAG with the 
maximum number of edges. 

▪ G’ = (V,E’) with E’⊆E  and |E’| maximal 

▪ one of Richard M. Karp's 21 NP-complete problems 
(1972) 

▪ many heuristics are published  

▪ each has different properties (choose one that fits our 
problem best)

MAXIMUM ACYCLIC SUBGRAPH
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▪ Genome graphs are sparse.  

▪ running time: O(|E|) 

▪ performance: |E’|>|E|/2+|V|/6  

▪ Simple, greedy algorithm 

▪ Creates a vertex order by removing all sinks 
and sources. 

▪ when no sink or source exists, remove the vertex with 
the maximum of: out-degree - in-degree 

▪ Transform the vertex order in a subgraph by keeping all 
edges that goes from a smaller to a bigger vertex in the 
order

EADES ALGORITHM  (1993)

19



▪ new possibilities for reduction 

▪ a DAG is cycle-free: cycle removal not required  

▪ the other three reducers are reapplied to the DAG 

▪ reduce until fixed point is reached

POST CYCLE REMOVAL
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▪ 1,091,540 vertices 

▪ 11,095,894 edges 

▪ 1 connected component

27 WAY INSECT NO CYCLE REDUCED
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▪ 1,091,540 vertices 

▪ 1,826,626 edges

27 WAY INSECT NO CYCLE REDUCED
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theory: 

▪ genomes in higher species are linear 

▪ reduced DAG can be transformed into a linear order 
using topological sorting 

implementation: 

▪ special constraint to keep the neighborhood 

▪ use a modified version of Kahn's algorithm (1962)

LINEAR ORDER

23



▪ for each source v: 

▪ insert v to the order at the end 

▪ save successors of v and remove v 

▪ for all successors s of v: 

▪ if s is now a source 

▪ continue with s as new source 

▪ after the algorithm: either no edge is left or graph was 
not a DAG

MODIFIED KAHN'S ALGORITHM
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▪ for each source v: 
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MODIFIED KAHN'S ALGORITHM
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▪ for each source v: 

▪ insert v to the order at the end 
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▪ for each source v: 

▪ insert v to the order at the end 

▪ save successors of v and remove v 

▪ for all successors s of v: 

▪ if s is now a source 

▪ continue with s as new source 

▪ after the algorithm: either no edge is left or graph was 
not a DAG

MODIFIED KAHN'S ALGORITHM

24

1,2 ,4



▪ for each source v: 

▪ insert v to the order at the end 

▪ save successors of v and remove v 

▪ for all successors s of v: 

▪ if s is now a source 

▪ continue with s as new source 

▪ after the algorithm: either no edge is left or graph was 
not a DAG

MODIFIED KAHN'S ALGORITHM

24

1,2 ,4,3



▪ for each source v: 

▪ insert v to the order at the end 

▪ save successors of v and remove v 
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MODIFIED KAHN'S ALGORITHM
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▪ for each source v: 

▪ insert v to the order at the end 

▪ save successors of v and remove v 

▪ for all successors s of v: 

▪ if s is now a source 

▪ continue with s as new source 

▪ after the algorithm: either no edge is left or graph was 
not a DAG

MODIFIED KAHN'S ALGORITHM
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▪ near future: optimize implementation 

▪ investigate additional heuristics 

▪ alternative order for different views on the golden 
genome 

▪ analyze evolutionary events with the help of the golden 
genome

FURTHER WORK
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THANK YOU FOR YOUR ATTENTION

26



▪ from UCSC 

▪ small test data 

▪ 4 Way Bacteria, 6,222 blocks 

▪ medium data 

▪ 27 Way Insect, 2,115,903 blocks 

▪ big data 

▪ 100 Way Vertebrata, 109,850,411 blocks

DATASETS
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▪ used by all major databases 

▪ multiple alignment format  

▪ contains MAF-blocks 

▪ One MAF-block is one local multiple alignment

MAF-FILES
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a score=3870.000000
s dm6.chr2L             2724 60 + 23513712 TCTTATTTTACCGCAAACCCAAatcgacaatgcacgacaga----ggaa-gcagaacagatattt
s droSim1.chr2L         1448 60 + 22036055 TCTTATATTACCGCAAGCCCAAAAtgacaacgcacgacaag----gaga-gcaagagagatagtc
s droSec1.super_14      1380 65 +  2068291 tctctctttagCGACTACTTAGGGTCGCAATATGGAATAAAGGCTGAGACGCAAATTAAATATTT



▪ 1,535,811 vertices 

▪ 15,843,948 edges 

▪ 1 connected component

27 WAY INSECT NO CYCLE
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▪ 1,535,811 vertices 

▪ 2,363,118 edges

27 WAY INSECT NO CYCLE
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CLOSED DAG REDUCER
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GENOME
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PERFECT GRAPH
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LOCAL MULTIPLE ALIGNMENTS
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LOCAL MULTIPLE ALIGNMENTS
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LOCAL MULTIPLE ALIGNMENTS
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LOCAL MULTIPLE ALIGNMENTS
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LOCAL MULTIPLE ALIGNMENTS
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LOCAL MULTIPLE ALIGNMENTS
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LOCAL MULTIPLE ALIGNMENTS

34



4 WAY BACTERIA
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PERFECT GRAPH
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▪ 6,222 vertices 

▪ 24,884 edges 

▪ 1 connected component
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4 WAY BACTERIA
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▪ 6,222 vertices 

▪ 12,888 edges 

▪ 1 connected component
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▪ 3,959 vertices 

▪ 7,956 edges 

▪ 1 connected component

4 WAY BACTERIA REDUCED
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▪ 2,869 vertices 

▪ 5,399 edges 

▪ 1 connected component

4 WAY BACTERIA NO CYCLE REDUCED
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▪ 3,959 vertices 

▪ 7,175 edges 

▪ 1 connected component

4 WAY BACTERIA NO CYCLE
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▪ Graph Generation: 

1. Parsing 

2. Sorting 

3. Vertex insertion 

4. Edge insertion 

▪ Strand fixing 

▪ Insert edge depending on strand

GRAPH GENERATION
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“In this letter we extend the above ideas to find a pair of 
segments, one from each of two long sequences, such 

that there is no other pair of segments with greater 
similarity (homology). “ 

Smith and Waterman (1981)

LOCAL ALIGNMENTS
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