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A graph G = (V (G), E(G)) is edge-transitive if the automorphism

group Aut(G) acts transitively on E(G).

We will study edge-transitivity for the Cartesian, the direct, the

strong, and the lexicographic product.
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Here is a picture for the lexicographic product:

This product is not commutative.
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The direct product does not always look as one might expect a

product to look like:

G× P3 G× P3

G

P3
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Interlude about the direct product and the internet graph

The direct product can be used to model large networks, networks

like the internet graph.

Networks are studied for performance, reliability, stability,

robustness, growth, self-organization, virus propagation and the like.

They have the following static properties: the power law degree

distribution, the small-world property, self-similarity, and more.
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They also have temporal properties. As a network grows it becomes

denser and its diameter decreases. (Leskovec, Kleinberg, Faloutsos

2005):

|E(t)| ∝ |V (t)|a, where 1 ≤ a ≤ 2 .

The adjacency matrix of the direct product of two graphs is the

Kronecker product of the adjacency matrices of the factors.

The direct product is thus also called the Kronecker product.

Given G, then A(G×,k) is the kth power of A(G) with respect to the

Kronecker product.
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They obey the static graph properties.

The small world property follows, because the diameter of the direct

product is close to the maximum of the diameters of the factors.

(“Six degrees of separation”.)

The power law degree distribution says that the probability that a

vertex has degree k is

P(k) ≃ ck−γ.

In our cases 2 < γ < 3.
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This causes the variance of the degrees to be large (about the size

of the expected value)

This makes the graph in a sense scale-free.

Which is related to the fractal structure.

The fractal property is visualized by the next slide.
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How do we get the power law?

The degree of a vertex v ∈ V (G×,k) is d(p1(v)) · · · d(pk(v)).

If the degrees in G are d1, d2, . . . , dn,

then the degrees in G×,k are d
i1
1 d

i2
2 · · · dinn , where

∑n
j=1 ij = k.

Hence the degree probabilities are proportional to
(

k
i1,i2,...,in

)

.

Thus we have a multinomial degree distribution.

Now, a careful choice of the degrees of the vertices of G causes it to

behave like a power law degree distribution.

9



Stochastic Kronecker graphs

Start with a square probability matrix P1 whose i, j-entry represents

the probability that an edge joins vertex i to vertex j,

Compute the Kronecker kth power Pk.

Then (an instance of) a stochastic Kronecker graph is obtained

from Pk by including an edge between two vertices with probability

as given in Pk.

But how do we do that? We have O(N2) pairs. We wish to

generate in O(E) time, that is in about O(N) time.
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But, the properties of the direct product of graphs (respectively the

Kronecker product of matrices) are well understood.

Leskovets shows to fit them, by appropriate choice of P1, to

real-world networks.

To be more precise, P1 can be chosen to fit such parameters as

diameter, or the constants c and γ in the degree distribution power

law.



Leskovec and Faloutsos, 2009, do this in linear time.

For example they showed that the matrix

( .98 .58

.58 .06

)

yields a Kronecker graph that fits the Internet (at the autonomous

system level) fairly well.
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If one can generate random networks with prescribed properties in

linear time, then one can play with them.

For example, one can check virus propagation models, or the

stability of networks with respect to attacks.

It turns out that the internet is very robust with respect to random

damage, but not with respect to targeted attacks.

End of interlude
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Vertex- versus edge-transitivity

All our products are vertex-transitive if and only if both factors are

vertex-transitive.

But things are quite different with respect to edge-transitivity as

Hammack, Imrich, Iranmanesh,Klavžar, Soltani have shown.

Not all products of edge-transitive graphs are edge-transitive.

Edge-transitive products may even have factors that are not edge

transitive, or, they may be vertex- and edge-transitive, but the

factors are only edge-transitive.
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THANK YOU FOR YOUR ATTENTION

But, if you really wish to learn about edge-transitive products, then

just continue reading.
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The lexicographic product

If G is connected, but not complete, then G ◦H is edge-transitive iff

G is edge-transitive and H is edgeless.

If G be nontrivial, complete, then G ◦H is edge-transitive iff H is the

product of a complete graph by an edgeless graph.
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The Cartesian product

Recall that a Cartesian product is vertex-transitive iff all factors are

vertex transitive.

But, the Cartesian product of two edge-transitive graphs need not

be edge-transitive:

H

G
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An edge-transitive graph need not be vertex transitive, see P3.

If G is edge- and vertex transitive it is possible that G is not arc-

transitive, that is, if ab is an edge, then there may be no automorphism

that swaps a and b.

Such graphs are called half-transitive. An example is the Gray graph

on 51 vertices.
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Theorem (IIKS)∗ Let G be connected, not ✷-prime.

Then G ∼= Hk, where H is connected, edge- and vertex transitive.

G is half-transitive iff H is half-transitive.

∗Imrich, Iranmanesh,Klavžar,Soltani
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The direct product∗

For the direct product we also admit loops.

K3 ×K = L

∗All further results are by Hammack, Imrich, Klavžar.
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Theorem Suppose A×B is connected and non-bipartite. Then it is

edge-transitive if and only if either

(i) both factors are edge-transitive and at least one is arc-transitive,

or

(ii) one factor is edge-transitive (and non-trivial) and the other is a

Kn with loops at every vertex.
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Proposition Suppose A has an odd cycle and B is bipartite. If both

A×K2 and B are edge-transitive and one is arc-transitive, then A×B

is edge-transitive.

We conjecture that the converse also holds.
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The strong product

Theorem The strong product G = A ⊠ B of two connected, non-

trivial graphs is edge-transitive if and only if both factors are complete.
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The weak Cartesian product

Given an index set I and graphs Gι, ι ∈ I, we define

G = �
ι∈I

Gι

on the vertex set consisting of all functions

x : ι → xι with xι ∈ V (Gι).

Two vertices x and y are adjacent if there exists a κ ∈ I such that

xκyκ ∈ E(Gκ) and xι = yι for ι ∈ I \ {κ}.

For finite I this is the usual Cartesian product.
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The Cartesian product G = ✷ι∈IGι of infinitely many non-trivial

connected graphs is disconnected.

The connected components are called weak Cartesian products.

We denote the connected component containing a ∈ V (G) by

a

�
ι∈I

Gι.

✷
a
ι∈IGι = ✷

b
ι∈IGι if and only if a and b differ in only finitely many

coordinates.
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Notice that no connected graph is the Cartesian product of infinitely

many prime graphs.

But, every connected graph is a weak Cartesian product of prime

graphs, and the prime factors are uniquely determined. We say:

Every connected graph has a unique prime factor decomposition

with respect to the weak Cartesian product∗.

∗I 1971, D.J. Miller 1970.
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Differences to the finite case.

1. Products of infinitely many connected, non-trivial factors are dis-

connected.

2. Weak Cartesian products of connected, asymmetric graphs can be

vertex-transitive∗.

3. A connected, edge-transitive graph G that is not prime with respect

to the Cartesian product is the Cartesian or weak Cartesian power of

a connected, edge-transitive graph H.

As in the finite case G is vertex-transitive, but H need not be vertex-

transitive†.
∗I 1987.
†Hammack, I and Klavžar 20xx.
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Case 3 can be more precisely described as follows:

Theorem Let G be a connected, edge-transitive graph that is not

prime with respect to the Cartesian product.

Then G is the Cartesian or weak Cartesian power of a connected,

edge-transitive graph H.

For vertex-transitive H the structure of G is described (on the next

slide) by Lemma A, otherwise by by Lemma B.

In both cases G is vertex-transitive.
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Lemma A Let H be connected, edge- and vertex-transitive and

G =�
a
ι∈I Hι, where Hι

∼= H and 2 ≤ |I|. Then:

(i) G is also edge- and vertex-transitive.

(ii) G is half-transitive if and only if H is half-transitive.

Lemma B Let H be connected, edge-transitive but not vertex-

transitive, bipartioned by its two vertex orbits V1 and V2.

Let G =�
a
ι∈I Hι, where Hι

∼= H, 2 ≤ |I|. Suppose

(a) infinitely many of the aι are in the vertex-orbit of Gι correspond-

ing to V1, and

(b) infinitely many in the vertex-orbit of Gι corresponding to V2.

Then G is edge-transitive (but only half-transitive) and vertex-transitive.
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This covers edge-transitive products

But, there is more to say about the direct product.

If you are interested, continue reading.
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More about the the categorical alias direct product

There is a seminal paper of R. McKenzie∗ from 1971 about the

categorical product of (binary) relational structures.

As binary relations can be considered as directed graphs, we

describe his results in the language of graphs.

Notice that the Cartesian product is not a product in the category

sense!

∗Ralph McKenzie, Cardinal multiplication of structures with a reflexive relation,
Fundamenta Mathematicae 70 (1971), 59-101.
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So let us have a look at the only real product, the categorical

product of binary relations.

In our language it is the direct product of directed graphs G.

Given a directed graph G we write uRv if there is an arrow from u to

v. The inverse relation R̆ is then denoted vR̆u.

The product G×H =
{

V (G×H), RG×H
}

of two structures G and H

is then defined by V (G×H) = V (G)× V (H) and

(g, h)RG×H (g′, h′) if g RG g′ and hRH h′.

31



Three examples of the categorical product

It is commutative, associative, and the one-vertex graph with a loop

is a unit.
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If the relation R is symmetric, that is, if R = R̆, then we obtain the

direct product.

Hence, the direct product of graphs is a special case of the

categorical product of binary relations.

This makes it so difficult and interesting.
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If we add loops to every vertex, multiply and delete the loops again,

then we obtain the strong product.

Hence we can also consider the strong product as a special case of

the categorical product of relations.
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So what did Ralph McKenzie, a student of Bjarni Jónnson, prove?

He extended the class of graphs for which the refinement property

holds, answering a question that goes back to Alfred Tarski.

He proved, among many other results, that

if both R|R̆ and R̆|R are connected over V (G)

and if G has no distinct elements with the same set of neighbors∗,

then the refinement property holds.

∗We call such structures thin.

35



R|R̆ and R̆|R connectedness are depicted in the following diagram:

x vy u

For the direct product R|R̆ and R̆|R is equivalent to

non-bipartiteness.

For the strong product it simply implies connectedness.
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The refinement property says that for any two isomorphic products

∏

ι∈I

Bι
∼=

∏

κ∈J

Cκ

there exist structures Dι,κ such that

Bµ
∼=

∏

κ∈J

Dµ,κ and Cν
∼=

∏

ι∈I

Dι,ν

for all µ ∈ I and ν ∈ J.
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What are the implications of this theorem?

1. It implies unique prime factorization if the refinement process does

not continue indefinitely.

Hence, R|R̆ and R̆|R connected (thin) structures have unique prime

factorization if they are finite or

if they satisfy certain finiteness conditions, such as being locally finite

or almost locally finite.

Many of the properties of finite Cartesian products have analogues

for finite strong and direct products, in particular if they are thin.
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Why was this not really taken up by graph theorists?

A. The proof of the refinement proof is non-algorithmic and leaves

open the algorithmic side of factorizing finite graphs.

For the strong product a polynomial algorithm was found by Feigen-

baum and Schäffer∗.

Later their method was extended to the direct product†.

In both cases unique prime factorization was a byproduct.

∗Feigenbaum and Schäffer 1992.
†Imrich 1998.
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B. Bipartite graphs are not covered.

This corresponds to the case when R is symmetric and when the

structure has two R-connected components.

There are numerous results in this area, many by Richard Hammack.

Little is known about factorizations of infinite bipartite graphs.

An exception is the infinite hypercube. It is the direct product of a

K2 and of a (non-unique) non-bipartite graph∗.

∗I and D. Rall, 2006.
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C. There is no criterion for the existence of prime factorizations.

D. However, we discuss of products of prime graphs.

1. If G is R|R̆ and R̆|R connected and the product
∏

ι∈I Bι of prime

graphs, then this presentation is unique by the refinement property.

2. But, the product G =
∏

ι∈I Bι of prime graphs that are R|R̆ and

R̆|R connected need not be connected.

To see this observe that in a strong product

dG(x, y) = max
ι∈I

{dBι
(xι, yι)}.
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Hence strong products are disconnected if there is no bound on the

diameters of the factors.

For the direct product the situation is slightly more complicated, but

a bound on the diameters is still needed.

Is the presentation of every connected component unique?

If so, what can one say about the relation between the vertex transi-

tivity of the factors and the product?
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3. There is also the weak strong product Ga =
∏a
ι∈I Bι of prime

graphs.

Ga is spanned by all vertices in G =
∏

ι∈I Bι that differ from a given

vertex a ∈ V (G) in only finitely many coordinates.

Notice that Ga it is not a connected component of G =
∏

ι∈I Bι.

If the Bι are prime, is weak factorization of Ga unique?

Such products were recently investigated by Tardif et al., because

they have the nice property that they can be vertex-transitive even

when all the Bι are asymmetric.
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E. Is there a good sufficient condition for the existence of prime

factorizations?

The Cartesian case was resolved because every edge was in a layer

with respect to any factorization.

Can we at least find pairs of vertices - so called Cartesian pairs - that

are in one and the same layer with respect to any factorization?

Then we could proceed as in the Cartesian case.

For the direct product the next figure indicates how to look for such

pairs. The idea relies on that for the strong product of finite graphs∗.

∗Feigenbaum and Schäffer 1992.
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Figure by D. Rall.
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F. Graphs with no prime factor decomposition.

There are graphs∗ G with G ∼= G3 but G 6∼= G2.

They cannot have a pfd.

Is there an easy example of a thin graph without pfd?

∗Trnkova 1976.
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Selection of open problems pertaining to infinite cardinal products

that are thin and R|R̆ and R̆|R connected

P1. Is the presentation of components of the product of connected

prime graphs (when the product is disconnected) unique?

P2. Is the presentation of a connected graph as a weak strong product

of prime graphs unique?

P3. Is there a criterion for the existence of prime factorizations of

infinite graphs?

P4. Is there an easy example of a thin graph without pfd?
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Finally, there is the class of products that are thin and connected,

but not R|R̆ and R̆|R connected.

What can one say about the structure of bipartite graphs that are

direct products of finite or infinite graphs?

P5. If K2 is a factor of G, is it unique?

That is, can G have a factorization where a prime bipartite graph

H 6= K2 is a factor?

48



If you got that far:

THANK YOU AGAIN!
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