RNAscClust – clustering RNAs using structure conservation and graph-based motifs

Milad Miladi1
Alexander Junge2

miladim@informatik.uni-freiburg.de
ajunge@rth.dk

1Bioinformatics Group, University of Freiburg
2Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen

31st TBI Winterseminar
Bled, Slovenia
February 2016
Clustering ncRNA sequences using structure conservation

GraphClust [Heyne et al., Bioinformatics, 2012]:

- Clusters ncRNA sequences
- Can find paralogs belonging to same ncRNA class
- Features based on local sequence and structure
Clustering ncRNA sequences using structure conservation

GraphClust [Heyne et al., Bioinformatics, 2012]:
- Clusters ncRNA sequences
- Can find paralogs belonging to same ncRNA class
- Features based on local sequence and structure

RNAscClust:
- Clusters paralogous RNA sequences structurally aligned to their orthologs
- Extends GraphClust approach:
Clustering ncRNA sequences using structure conservation

GraphClust [Heyne et al., Bioinformatics, 2012]:
- Clusters ncRNA sequences
- Can find paralogs belonging to same ncRNA class
- Features based on local sequence and structure

RNAscClust:
- Clusters paralogous RNA sequences structurally aligned to their orthologs
- Extends GraphClust approach:
 ⇒ Derives evolutionary conserved sequence and secondary structure
Single sequence vs alignment clustering

- Structure prediction from single sequence:
 - human: GACACAGU
 - chimp: UAGCCUCG
 - pig: CAGUAUUG
 - mouse: A-AACUUU
 - Consensus structure: (. . .)

- Structure prediction based on multiple alignment:
 - Set of correct structures:
 - 5': GACACAGU
 - 3': CACGUAGC

- Wrong structure:
 - 5': GACACAGU
 - 3': CACGUAGC
Single sequence vs alignment clustering

Human

GACACAGU

3'

5'

A

G

GU

3'

5'

C

C

A

A

Wrong clustering

Cluster 1

Cluster 2

Correct clustering

Cluster 1

Cluster 2

Cluster 3

Consensus structure (.(. . .))

Structure prediction from single sequence

Wrong structure

Single sequence clustering

Multiple sequence alignment clustering

Consensus structure based on multiple alignment
Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Graph Kernel
[Costa and De Grave, Proceedings ICML 10, 2010]

Extract substructures:
- intuitively: structure k-mers
- ncRNAs highly similar if many shared substructures
Measuring structure similarity of multiple alignments

PETfold
[Seemann et al., NAR, 2008]
Measuring structure similarity of multiple alignments

human
chimp
pig
mouse

threshold t

PETfold

[Seemann et al., NAR, 2008]

base pair
reliabilities
constraints

constrained folding

RNAfold for each sequence

[Lorenz et al., Alg for Mol Biol, 2011]

→ use NSPD Graph Kernel to compare alignments
RNAscClust pipeline: From input alignments to clustering

1. Set of multiple alignments
2. Reliable basepairs
3. Constrained folding
4. Pairwise similarities
5. NSPD Graph Kernel
6. GraphClust postprocessing steps
7. Clustering of multiple alignments
Constructing a benchmark data set

Split Rfam 12 family seed alignments into subalignments:

- Each subalignment contains one human sequence.
- Similar sequences from different species form a subalignment.
- Subalignments have maximum sequence identity.

Ideal clustering groups only subalignments from the same Rfam family.
Constructing a benchmark data set

Split Rfam 12 family seed alignments into subalignments:

1. Each subalignment contains one human sequence
2. Similar sequences from different species form a subalignment
 \Rightarrow subalignments have max. sequence identity
Constructing a benchmark data set

Split Rfam 12 family seed alignments into subalignments:

1. Each subalignment contains one human sequence
2. Similar sequences from different species form a subalignment ⇒ subalignments have max. sequence identity

Ideal clustering groups only subalignments from same Rfam family
Comparing sequence to alignment clustering

Subalignments in benchmark set

Extract human sequences

Human sequences in benchmark set

Cluster with GraphClust

Cluster with RNAscClust

Compare clustering performance
Low covariation in the benchmark data set

Benchmark set has high **Average Pairwise Sequence Identity** (APSI) in alignments

0.81 mean APSI
48 families
234 alignments
Low covariation in the benchmark data set

Benchmark set has high **Average Pairwise Sequence Identity (APSI)** in alignments

→ limit APSI to study effect of covariation on clustering performance
Benchmark sets with different degrees of covariation

Create 2 additional benchmark data set with controlled APSI in alignments

Medium APSI

0.64 mean APSI
26 families
166 alignments

Low APSI

0.49 mean APSI
10 families
92 alignments
Clustering performance metrics - V-measure

- **Homogeneity** H: each cluster contains only members of a single family
- **Completeness** C: all members of a given family are in same cluster
- **V-measure** [Rosenberg and Hirschberg, 2007] is harmonic mean of H and C:

$$V = \frac{2 \cdot H \cdot C}{H + C}$$
Clustering performance metrics - Adjusted Rand Index

- $a = \#\text{object pairs from same family assigned to same cluster}$
- $b = \#\text{object pairs from different families assigned to different clusters}$
- $n = \text{number of alignments}$

\[
\text{Rand Index} = \frac{a + b}{\binom{n}{2}}
\]

- **Adjusted Rand Index** [Hubert and Arabie, 1985] is Rand Index [Rand, 1971] adjusted for chance
More covariation improves RNAscClust performance
Leverage conserved sec. structure derived from multiple alignments
NSPD Graph Kernel as similarity measure
Improved clustering compared to GraphClust
Leverage **conserved sec. structure** derived from multiple alignments

NSPD Graph Kernel as similarity measure

Improved clustering compared to GraphClust

Next step:

Genome-scale clustering of potential ncRNAs
Acknowledgements

Bioinformatics Group, University of Freiburg:
- Milad Miladi
- Fabrizio Costa
- Rolf Backofen

RTH, University of Copenhagen:
- Stefan Seemann
- Jakob Hull Havgaard
- Jan Gorodkin

Funding:

DFG, Danish Center for Scientific Computing, Innovation Fund Denmark, Danish Cancer Society
Acknowledgements

Bioinformatics Group, University of Freiburg:
- Milad Miladi
- Fabrizio Costa
- Rolf Backofen

RTH, University of Copenhagen:
- Stefan Seemann
- Jakob Hull Havgaard
- Jan Gorodkin

Funding:
- DFG, Danish Center for Scientific Computing, Innovation Fund Denmark, Danish Cancer Society

Thank you for your attention!
Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Kernel used in GraphClust [Heyne et al., Bioinformatics, 2012]

Extract substructures:

- ≈ structure k-mers
- ncRNAs highly similar if many shared substructures
RNAscClust full pipeline

RNAscClust specific input and methodology

1. Input multiple alignments
2. Predicting sets of sec. structures
3. Sparse feature vectorization
4. Local sensitivity hashing
5. Candidate clusters of multiple alignments

GraphClust methodology

6. Candidate clusters of representatives
7. Cluster refinement and extension
8. Report clusters

Steps executed in parallel are shown as stacks.
V-measure

Clusters $K = \{K_1, \ldots, K_m\}$; true classes $C = \{C_1, \ldots, C_n\}$. Homogeneity h is defined as:

$$h = \begin{cases} 1 & \text{if } H(C|K) = 0 \\ 1 - \frac{H(C|K)}{H(C)} & \text{else} \end{cases}$$

$H(C|K)$ is the conditional entropy of the classes given the clustering and $H(C)$ is the entropy of the classes, i.e.,

$$H(C|K) = -\sum_{k=1}^{K} \sum_{c=1}^{C} \frac{a_{ck}}{N} \log \frac{a_{ck}}{\sum_{c=1}^{C} a_{ck}}$$

$$H(C) = -\sum_{c=1}^{C} \frac{\sum_{k=1}^{K} a_{ck}}{n} \log \frac{\sum_{k=1}^{K} a_{ck}}{n}$$
V-measure

Clusters $K = \{K_1, \ldots, K_m\}$; true classes $C = \{C_1, \ldots, C_n\}$. On the other hand, completeness c is defined as:

$$c = \begin{cases}
1 & \text{if } H(K|C) = 0 \\
1 - \frac{H(K|C)}{H(K)} & \text{else}
\end{cases}$$

where $H(K|C)$ is the conditional entropy of the clustering given the classes and $H(K)$ is the entropy of the clustering, i.e.,

$$H(K|C) = -\sum_{c=1}^{|C|} \sum_{k=1}^{|K|} \frac{a_{ck}}{N} \log \frac{a_{ck}}{\sum_{k=1}^{|K|} a_{ck}}$$

$$H(K) = -\sum_{k=1}^{|K|} \frac{\sum_{c=1}^{|C|} a_{ck}}{n} \log \frac{\sum_{c=1}^{|C|} a_{ck}}{n}$$

V-measure is harmonic mean of homogeneity and completeness and is not normalized wrt. random labeling. 0.0 is as bad as it can be, 1.0 is perfect.
Split each Rfam 12 family seed alignment into subalignments. *Similar* sequences from *different* species form a subalignment.
1) Each sequence in the alignment is represented as a node in a graph.
Constructing a benchmark data set

2) Remove sequences with pairwise sequence identify (PSI) > 0.95.
3) Add edge between sequences from different species with PSI $\in (0.9, 0.95]$.
Constructing a benchmark data set

4) Search for cliques in graph.
5) Add clique with max. APSI as subalignment to benchmark data set.
6) Add edge between sequences from different species with PSI ∈ (0.8, 0.9].

Family subalignments (Cliques)
7) Add clique as subalignment to benchmark data set.
8) Add edge between sequences from different species with PSI ∈ (0.7, 0.8].