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Generative Chemistries

» The study of exploring chemical spaces of unknown
compounds.

» Given a set of molecules and a set of reactions, the chemical
space is modeled as a hypergraph.

» Inferring hyperpaths in hypergraphs.






Motivation

v

Asses the chemical quality of hyperpaths.

v

Affected by various chemical properties.

v

Wetlab? Expensive..

v

Need a predictive method!



The Group Contribution Method!

> Assumes a linear relationship between property and chemical
structures (groups).

» Decomposes molecules into a set of groups.

» The target property can then be predicted as the sum of
contributions of its corresponding groups:

t:ZG;-C,'
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Matthew D. Jankowski, Christopher S. Henry, Linda J. Broadbelt, Vassily Hatzimanikatis (2008): Group Contribution
Method for Thermodynamic Analysis of Complex Metabolic Networks, Biophysical Journal, V. 95



The Three Problems

» Group ldentification.
» Compound Decomposition.

» Model Learning.



Group Identification

» Expert knowledge required.
» Differentiates on non-topological characteristics.
» Aromatic rings etc.

> Assigned a priority.

TABLE 1 Structural groups used in group contribution method

Description of molecular substructure

Molecular substructures involving halogens
—Cl (attached to a primary carbon with no other chlorine atoms attached)*
—Cl (attached to a secondary carbon with no other chlorine atoms attached)™®
—Cl (attached to a tertiary carbon with no other chlorine atoms attached )*
—Cl (attached to a primary carbon with one other chlorine atom attached )*
—Cl (attached to a secondary carbon with one other chlorine atom attached)*
—Cl (attached to a primary carbon with two other chlorine atoms attached)*
—Br {attached to an aromatic nng)*
—1I (attached to an aromatic ring ¥
—F (attached to an aromatic ring)*



Compound Decomposition

» Given a set of groups G find the frequency they occur in a
compound C, such that every vertex of C is assigned to
exactly one group.

» The monomorphism problem!

» NP-complete...

» Given G, C, and a set of rules R, a graph decomposition is a

function:
f:f(G,C,R) = F

such that F; corresponds to the number of monomorphisms
from G; to C that is valid under R.

> Results may vary wildly.

Ronald G. Forsyth, Peter D. Karp, Michael L. Mavrovouniotis (1997): Estimation of equilibrium constants using
automated group contribution methods, CABIOS, V. 13
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Example

H3C, OH, W=—=0, C——C

F={1,1,1,0}




Model Learning

F = {0,2, 1,0} t1 = —2

Fi = {Fio, Fix, Fi3, Fia}

» Ordinary Least Squares Regression:

min( Y (t — Fb)?)

i=1..[t|

» Validated with Cross Validation.



Shortcomings Of The Current Approaches

v

Expert knowledge required.

v

Limited to few chemical spaces.

v

Priority setting.

v

Introducing new compounds.

v

We need something flexible!



A Generic Approach - Goals

v

Automatic group identification.

v

Consistency in predictive estimations.

v

Fast predictive decomposition.

v

Main goal is not to out-perform existing implementations.



Generic Group ldentification

v

Potentially 2/V(&)l different subgraphs.
> Not feasible.

v

Repeating patterns might be important.

v

Frequent Subgraph Mining.
» Also NP-complete... But feasible!

v

Only simple groups.

Xifeng Yan, Jiawei Han (2003): Graph-Based Substructure Pattern Mining, ICDM



Example

HsC——C ya C—C—cC
C
OH l

Figure: Frequent Subgraph mining with min_support= 2



Example

H3CC< ya C—C—C

C

Figure: Frequent Subgraph mining with min_support= 2



Example

H3CC< ya C—C—C

Figure: Frequent Subgraph mining with min_support= 2



Example

H3CC< ya C—C—C

Figure: Frequent Subgraph mining with min_support= 2



Example

H3CC< ya C—C—C

C C—C 0] C=—=0

Figure: Frequent Subgraph mining with min_support= 2



Generic Compound Decomposition

» Still finding monomorphisms.
» Still NP-complete..

» No priorities.

» Reminder, just a function:
f:f(G,C,R) = F

» Overlapping allowed.

» Beware of collinearity.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento (2004): A (Sub)Graph Isomorphism Algorithm
for Matching Large Graphs, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
V. 26
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Figure: Overlapping Graph Decomposition
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Figure: Overlapping Graph Decomposition
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Figure: Overlapping Graph Decomposition
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Example

Figure: Overlapping Graph Decomposition
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Generic Model Learning

» Many variables few data points.
» Ordinary Least Squares at its worst.

» Let's look at some possible alternatives.



The Suitors

» Ordinary Least Squares
» Already out.
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The Suitors
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Ordinary Least Squares
» Already out.
Principle Component Regression
» Computes the entire eigen matrix.
» Forced to potentially use all variables.
» Does not determine importance of components based on target
property.
Partial Least Squares
» Components can be computed iteratively.
» Includes target properties in component selections.
» Still forced to use all original variables.
Stepwise Regression
» Includes feature selection.
» Very sensitive to collinearity between variables.
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The Suitors

» Ordinary Least Squares
» Already out.
Principle Component Regression
» Computes the entire eigen matrix.
» Forced to potentially use all variables.
» Does not determine importance of components based on target
property.
Partial Least Squares
» Components can be computed iteratively.
» Includes target properties in component selections.
» Still forced to use all original variables.
Stepwise Regression
» Includes feature selection.
» Very sensitive to collinearity between variables.
Least Absolute Shrinkage and Selection Operator (LASSO)
» Also includes feature selection.
» Can be adjusted to be less sensitive to collinearity.
» Sounds promising!

v

v

v

v



Model Validation

» Repeated Double Cross Validation

» Optimize model complexities while giving realistic estimations
of prediction errors.

Neaup ObjECES in

random sequence, residual matrix
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prediction 1 N
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components, Aqpr,
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Peter Filzmoser, Bettina Liebmann, Kurt Varmuza (2009): Repeated double cross validation, Journal of Chemomet-
rics, V. 23



Single Pass Limitations

» Hard to control granularity.
> min_support too high = over fitting.

> min_support too low = under fitting.



Under Fitting

Figure: Model learned with groups occurring in one third of the
compounds. Cross validation repeated 10 times

Normal Q-Q Plot Response vs. fitted values
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Over Fitting

Figure: Model learned with all groups occurring in at least one compound
and is smaller than 7 atoms. Cross validation repeated 10 times

Normal Q-Q Plot Response vs. fitted values
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Solution? Think iteratively!

Algorithm 1 learnGroups(C, /)

me 1

G+ g%pan(C,m)

y < properties(C)

X < decomposed(C, G)
M <+ learn(X,y)

: while i > 0 do

O « outliers(M)
G’ « gSpan(O, m)
G+ G'/(GNG')
10: if G/ = () then

11: m+ m—1

12: continue

13: end if

14: G+ G UG

15: Decompose compounds, learn model based on the new G, and decrement i
16: end while

17: return M

QNGO




Lets Try It Out On Thermodynamics

Figure: PLS. Groups smaller than 7. 6 iterations
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Figure: LASSO. Groups smaller than 7. 6 iterations

Normal Q-Q Plot Response vs. fitted values
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Results

SEP IQR MAD CDFO05 |G| Avg p

Jankowski 222 - - - 73 73

lasso-6iter 991 822 7.74 554 87 36.28
lasso-underfit | 24.46 17.14 16.88 11.53 38 12.38
lasso-overfit 18.52 1356 1250 9.46 2365 36.02

pls-4diter 1148 833 826 6.00 78 78



Groups - Sample

C = —6.68
O—FP = —80.39
C?C = —47.60

C/ \C
] s
C\C/C

Figure: Sample of groups learned from lasso-6iter



Discussion

> It's pretty generic!

» Single group identification.

» Variance based group exclusion.

» Stopping criterion.

» How to measure uncertainty in data.
> Better outlier detection.

> Use reactions as test data.

» Non-linear approaches.
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