A new statistical approach to identify differential expression in small RNA-Seq data

seit 1558

32nd TBI Winterseminar, 2017

Emanuel Barth

Friedrich-Schiller-Universität Jena

	SIZE SELECT	RNA SAMPI	LING							
AMPLIFICATION					CONDITION I CONDITIC					
		ΟΤΤΑΤΤΑ ΑΤΟΤΤ <u>G</u> GTA	CAG	GENE A	5	3	7	1	6	5
		-> TATGAG	\rightarrow	GENE B	19	21	28	30	30	35
		GAGTAT CTTAT TACTI CAGGGTA	AT	GENE C	36	33	29	69	119	83
	SEQ	MAPPING COUNTIN	5& 1G							

.....

....

****

.....

- Reads coming from small RNA-Seq are more likely to follow a Gamma distribution rather than a Poisson distribution
- Through a simple transformation of the count data, we can make use of much simpler statistical models for differential expression analysis

<u>MicroRNA</u> <u>Differential</u> <u>Expression</u> analysis (MeRDE)

- Input: sam/bam mapping files or raw count file
- Output: differentially expressed miRNAs (and some nice pictures)
- Count normalization based on pseudo-reference scaling¹
- Count transformation using the cubic root function
- Testing for differential expression with Welch's t-test

¹Anders et al. *Differential expression analysis for sequence count data,* G Bio, 2010, 11:R106

<u>MicroRNA</u> <u>Differential</u> <u>Expression</u> analysis (MeRDE)

• Treats 5'- and 3'-ends independently

- small RNA-Seq data sets of three different species of different tissues between different ages
- Human: 60 Datasets
- Mouse: 74 Datasets
- Notho. furzeri: 160 Datasets

- Artificial data setup:
 - Gamma scaling factor $\beta=1$
 - two conditions with 3 to 9 replicates
 - 1000 count files each containing 5000 simulated miRNAs
 - 1% 5% of the genes are DE
 - DE factor between 2-fold and 5-fold up-/downregulated

- Improved artificial data setup:
 - Gamma scaling factor $\beta = 1, 5, 10, 20$
 - two conditions with 3 to 9 replicates
 - 1000 count files each containing 5000 miRNAs
 - 1% 5% of the genes are DE
 - DE factor between f(x) and 2-fold up-/downregulated
 - outlier rate of 2%

$$f(x) = \frac{1.322}{\log_{4.8} x} + 1.1$$
 where x is the base mean expression

Friedrich-Schiller-Universität Jena

- Pairwise age comparison of two short-lived fish
 - Nothobranchius furzeri GRZ: 5, 7, 10, 12 and 14 weeks of age
 - \approx 20% more DEGs compared to DESeq2

- Nothobranchius furzeri MZM 5, 12, 20, 27 and 39 weeks of age
- \approx 14% more DEGs compared to DESeq2

Friedrich-Schiller-Universität Jena

Still to do:

• Detecting and handling outliers

Still to do:

- Adjust transformation based on the genes estimated means and variances by applying a regularized cubic root function
- Instead of count transformation, create a new model and perform hypothesis tests assuming gamma-distributed random variables

- small RNA-Seq data sets of three different species of different tissues between different ages
- Human: 60 Datasets
- Mouse: 74 Datasets
- Notho. furzeri: 160 Datasets

