Sampling strategies to approximate RNA folding kinetics

Gregor Entzian

University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry

entzian@tbi.univie.ac.at

Supervisor: Univ.-Prof. Dipl.-Phys. Dr. Ivo L. Hofacker

February 14, 2017

RNA Structure Dynamics

RNA Switch Folding Kinetics

Energy Landscape

$$L = \{S, f, M\}; S = \{s_1, s_2, ...\}; f : s \to \mathbb{R}; M = " + / - 1 \text{bp"}$$

Energy Landscape - Growth

growth: 1.8^N

atoms in the universe: 10^{80}

$$1.8^{N} = 10^{80} \rightarrow N = 312$$
 nucleotides

Coarse Graining

RNA Folding Kinetics

$$\frac{dp_i(t)}{dt} = \sum_{j \neq i} \left[p_j(t) r_{ji} - p_i(t) r_{ij} \right]$$

Goals

- Make RNA folding kinetics prediction applicable to biologically relevant sequence lengths (> 100nt)
- How to do that?
 - Sample the energy landscape to cover most important states
 - ② Determine physically meaningful partitioning of partial landscape into macro states
 - 3 Derive good transition rate approximations for resulting macro states
 - Implement the above into a pipeline

State Generation

Exhaustive enumeration

- up to a certain threshold
- exponential number of structures
- \rightarrow only for short sequences

Boltzmann sampling (importance sampling)

$$P(s) = \frac{e^{-\frac{E(s)}{RT}}}{Q}$$
 with $Q = \sum_{S} e^{-\frac{E(s)}{RT}}$

- highly redundant
- only structures with small energy deviations from the ground state

Variable temperature sampling

$$T = \xi \cdot T_0, \, \xi > 1$$

- undirected
- large T = sampling from uniform distribution

New Approach: Guiding Potentials

sampling with focus on important reference structures

$$p(s_1) = p(s_2) = p(s_{mfe})$$

 $E'(s) = E(s) + \hat{E}(s)$
 $\hat{E}(s) = d(s, s_1) \cdot w_1 + d(s, s_2) \cdot w_2$

Interactive Guided Sampling - Initial References

Interactive Guided Sampling - Iteration 1

Interactive Guided Sampling - New References

Interactive Guided Sampling - Iteration 2

Tasks

- Develop an automated iterative sampling strategy which is fast and produces both, diverse and most important structures of the energy landscape.
- ② Develop cluster-strategies for RNA structures, to identify important structures and to generate macrostates.
- Oevelop methods for computing the transition rates for incomplete landscapes.
- Onstruct a pipeline and programs to compute RNA folding kinetics for long sequences and explore the underlying energy landscape. Implement a web server, which provides a comfortable graphical user interface.

Thank you!

- Ivo Hofacker
- RNALands project team:
 - Andrea Tanzer, Ronny Lorenz, Maria Waldl, Yann Ponty, Mireille Regnier, Hélène Touzet, Loic Paulevé, Alain Denise, Juraj Michalik