Detection of Chemical tRNA Modifications

Anne Hoffmann

Bioinformatics Group University of Leipzig

February 14th, 2017

tRNA Modifications

Phizicky et al., Genes Dev. 2010, 24: 1832-1860

- a large number exists
 - \hookrightarrow 105 are known
 - $\hookrightarrow \varnothing$ 8 modification per tRNA
 - → in yeast: 25 modifications occur at 36 different positions
- They are not well understood!!!

tRNA Modifications affect the ...

- ... regulation of translation & growth (anticodon loop)
- ... catalytic function (various positions)
- ... structural stability in terms of flexibility & rigidity (main body)

tRNA Modifications affect the ...

- ... regulation of translation & growth (anticodon loop)
- ... catalytic function (various positions)
- ... structural stability in terms of flexibility & rigidity (main body)
 - \hookrightarrow dihydrouridine in the D-arm promotes the C2'-endo sugar conformation
 - \hookrightarrow are found in psychrophilic organism as a strategy for cold adaption
 - \hookrightarrow playes a role in the temperature adaption of organism

1. many modifications are recognizable in RNA-seq data as sequencing errors

- 1. many modifications are recognizable in RNA-seq data as sequencing errors
 - \hookrightarrow develop a bioinformatic pipeline
 - \hookrightarrow understand the evolutional function and conservation
 - \hookrightarrow analyze the variation across different cell types and tissues

- 1. many modifications are recognizable in RNA-seq data as sequencing errors
 - \hookrightarrow develop a bioinformatic pipeline
 - \hookrightarrow understand the evolutional function and conservation
 - \hookrightarrow analyze the variation across different cell types and tissues
- 2. many modifications modulate the tRNA structure

- 1. many modifications are recognizable in RNA-seq data as sequencing errors
 - → develop a bioinformatic pipeline
 - $\hookrightarrow\,$ understand the evolutional function and conservation
 - \hookrightarrow analyze the variation across different cell types and tissues
- 2. many modifications modulate the tRNA structure
 - $\, \hookrightarrow \,$ understand the correlation with temperature adaption
 - \hookrightarrow analyze it in psychrophilic to thermophilic bacteria
 - \hookrightarrow analyze it in yeast
 - \hookrightarrow analyze treated vs. untreated RNA-seq data

UNIVERSITÄT LEIPZIG

Simulation Testing

- adjust the parameters to improve the pipeline
- validate the pipeline by testing it with simulated NGS data

UNIVERSITÄT LEIPZIG

Simulation Testing - Genome Preparation

Bioinformatics Group – University of Leipzig Anne Hoffmann — February 14th , 2017

Simulation Testing - Genome Preparation

 \rightarrow comparisons of different sequence similarities (greedy)

Bioinformatics Group – University of Leipzig Anne Hoffmann — February 14th , 2017

Simulation Testing - Read Simulation

Simulation Testing - Read Simulation

 \rightarrow comparisons of different backgrounds (greedy, 100%)

Bioinformatics Group – University of Leipzig Anne Hoffmann — February 14th, 2017

UNIVERSITÄT LEIPZIG

Simulation Testing - Analysis

Simulation Testing - Analysis

- to call misincorporations
- calculate expected error rate for each substitution as background
- weight expected rates considering multimappers
- check for every genomic position the likelihood to see a certain substitution by chance given the background rate
- merge the p-value likelihoods for all substitutions with Fisher's method

Simulation Testing - Analysis

- \rightarrow comparison of different query mapping filter methods vs. cluster method
- \rightarrow tRNA background vs. 100% clustered tRNA background

Bioinformatics Group – University of Leipzig Anne Hoffmann — February 14th , 2017

Work in progress

- validate the pipeline by testing it with bigger simulated NGS data
- analyze different data sets of different species
 - $\,\hookrightarrow\,$ understand correlation with temperature adaption
 - \hookrightarrow analyze the evolution, conservation
 - $\,\hookrightarrow\,$ analyze the variation across different cell types and tissues

UNIVERSITÄT LEIPZIG

- Peter F. Stadler
- Mario Mörl
- Fabian Amman
- Christian Lorenz

...and thanks to you for your attention!