Autocatalytic Sets and RNA Secondary Structure

Wim Hordijk

An Institute for the Advanced Study of Natural Complex Systems

Bled 2002...

The Origin of Life

• Main paradigm:

- The RNA world.
- Life started with one or more self-replicating RNA molecules.

• Problems:

- No experimental evidence that RNA can catalyze its own template-directed replication.
- How did cellular life (genetic code, metabolism, membrane) evolve from this?

Mutual Catalysis

 $\mathbf{A} = \mathbf{CCG} \quad \mathbf{B} = \mathbf{CGG}$

(Sievers & von Kiedrowski, Nature, 1994)

Mutual Catalysis

(Kim & Joyce, Chemistry & Biology, 2004)

Mutual Catalysis

Autocatalytic Set

Autocatalytic Set

An autocatalytic (RAF) set is a set of chemical reactions and associated molecules which is:

1.Reflexively Autocatalytic (RA): all reactions in the set are catalyzed by at least one molecule from the set itself.

2.Food-generated (F): all molecules in the set can be produced from a "food set" using only reactions from the set itself.

 \rightarrow A chemical reaction network that has catalytic closure (1) and is self-sustaining (2).

Original Claim

"The formation of autocatalytic sets of polypeptide catalysts is an expected emergent collective property of sufficiently complex sets of polypeptides, amino acids, and other small molecules."

(Kauffman, 1986)

Binary Polymer Model Example

Computational Studies

- Hordijk & Steel (2004-2017)
- Farmer et al. (1986, 1991)
- Wills & Henderson (2000)
- Jain & Krishna (2001, 2002)
- Filisetti et al. (2011)
- Vasas et al. (2012)
- Tanaka et al. (2014)

RNA Secondary Structure

(ViennaRNA 2.0, Lorenz et al., 2011)

Computational Model

- Generate *N* random RNA sequences of length *L*.
- Fold each sequence into its MFE structure.
- For each RNA secondary structure:
 - Get all hairpin loops of length >= 4.
 - Find "ligation template" of length 4.
- For each pair (A,B) of RNA secondary structures:
 If *hairpin-loop*(A) is the base-pair complement of *ligation-template*(B) => A *catalyzes* ligation of B.
- Use the RAF algorithm to find autocatalytic sets.

Existence of Autocatalytic Sets

- *N* = 20, *L* = 32, 1000 random instances.
- Pr[RAF] = 0.50

Dependence on N and L

BUSINESS ANALYTICS USING "SMART" COMPUTING

.com

Analvt

Relative Size of Autocatalytic Sets

BUSINESS ANALYTICS USING "SMART" COMPUTING

com

Number and Size of Hairpin Loops

com

Peptide Autocatalytic Sets

(Ashkenasy et al., PNAS, 2004)

Conclusions

- New computational model taking molecular (RNA) structure into account.
- Autocatalytic sets are likely to exist,
- even for small networks of short sequences.
- Probability increases with increasing network size and sequence length...
- ...but is mostly driven by sequence diversity rather than sequence length.
- Consequences for the origin and evolution of life?

Further Reading

W. Hordijk Autocatalytic Sets and RNA Secondary Structure Journal of Molecular Evolution (in press), 2017

Cornell University Library

arXiv.org > q-bio > arXiv:1612.02770

Quantitative Biology > Molecular Networks

Autocatalytic Sets and RNA Secondary Structure

Wim Hordijk

www.WorldWideWanderings.net

