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The	problem	

à	Simplifica9on:	no	HGT-event	
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We	call	two	genes	x	and	y	
-	ortholog	if	lca(x,y)	=				(specia9on)	 	 	e.g.	a2	and		b1	
-	paralog	if	lca(x,y)			=				(duplica9on)	 	e.g.	c1	and	c2	
-	xenolog	if	lca(x,y)		=				(HGT)	 	 	 	e.g.	b2	and	c1	
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-	R		=	the	set	of	all	(x,y)	with	lca(x,y)	=				(specia9on)		
-	R		=	...	with	lca(x,y)	=				(duplica9on)		
-	R		=	...	with	lca(x,y)	=				(HGT) 		

		

The	(dis9nct,	binary,	symmetric)	event-Rela/ons:	

The	event-Rela9ons	
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Simplifica9on:	no	HGT-events	
à R		=	R	

The	event-Rela9ons	
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R			and		R	
à	graph	representa9on	of	
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A	graph	is	called	cograph	if	and	only	if		
there	exists	no	induced	subgraph	on	4	nodes	that	is	a	P4	(																																	)	
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Then	two	genes	x	in	X	and	y	in	Y	are	es/mated	orthologs	if:	
	

i.  	they	are	from	different	species	and	
ii.  	s(x,y)	is	the	~best	score	compared	to	s(x‘,y)	and	s(x,y‘)	where	x‘	in	X,	y‘	in	Y	
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...	 ...	 ...	

2	1	 n-1	

1⋅a1	 2⋅a2	 (n-1)	⋅an-1	+	 +...+	 =	n	

Par//on	problem:	
	

	given	an	integer	n	
	Ques9on	:	Obtain	all	possible	ways	to	write	n	as	sum	of	1	,	...	,	n-1		

n	 1	
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Results	for	n=4	leafs	

Total	number	of	gene	trees	 	:	324	
	

Non-cograph	cases		 	 	:	27	
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Results	for	n=4	leafs	

Total	number	of	gene	trees	 	:	324	
	

Non-cograph	cases		 	 	:	27	
	

Number	of	problemclasses	 	:	1	

a b

bc

a b

a c a b a c

R		:	

problemclass	#1	
27	genera9ng	gene	trees	
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Results	for	n=5	leafs	

Total	number	of	gene	trees	 	:	3543	
	

Non-cograph	cases		 	 	:	822	
	

Number	of	problemclasses	 	:	9	



Ar9ficial	Data	Analysis	
Summary	

and	
Outlook	

Introduc9on	

Ques9on	1	:	Is	there	a	preference	of	right/wrong	edges?		

b1					a			b2								c	
R		:	R		:	

b1	

a	 b2	

c	

b1	

a	 b2	

c	



Ar9ficial	Data	Analysis	
Summary	

and	
Outlook	

Introduc9on	

Ques9on	1	:	Is	there	a	preference	of	right/wrong	edges?		

b1					a			b2								c	
R		:	R		:	

b1	

a	 b2	

c	

b1	

a	 b2	

c	



Ar9ficial	Data	Analysis	
Summary	

and	
Outlook	

Introduc9on	

Ques9on	1	:	Is	there	a	preference	of	right/wrong	edges?		
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problemclass	#1	
27	genera9ng	gene	trees	
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length	of	the	shortest	path		

between	x	and	y	

Ques9on	2	:	Can	one	infer	informa9on	about	the	skeleton?		

a b
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Consider							with	leaf	distance	d	as	addi9onal	informa9on.	R	
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Consider							with	leaf	distance	d	as	addi9onal	informa9on.	R	

Ques9on	2	:	Can	one	infer	informa9on	about	the	skeleton?		

a b

bc

problemclass	#1	
27	genera9ng	gene	trees	

d(x,y)	=	
length	of	the	shortest	path		

between	x	and	y	
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n=5	with	leaf-distant	d	



Summary	and	Outlook	
Ar9ficial	
Data	

Analysis	
Introduc9on	

Ø  Generated	all	possible	gene	trees	for	up	to	7	leafs	
	
Ø  No	informa9on	about	right	or	wrong	placed	edges	in	the	problemclasses	
	
Ø  The	leaf	distance	d	gives	us	the	unrooted	skeleton	tree	

Summary:	

For	the	future:	

Ø  Find	a	more	efficent	way	to	generate	the	leaf-labeling	
	
Ø  Define	and	inves9gate	more	ques9ons	
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Graph-based	orthology	inference	 	(e.g.	proteinOrtho)	

Input	:	sequence	data	

Local	alignment	search	
(e.g.	BLAST)	

Sequence	similarity	s(x,y)	

	
Then	two	genes	x	(from	species	A)	and	y	(from	species	B)	are	es/mated	orthologs	if:	
	

i.  A	≠	B		
ii.  The	sequence	similarity	s(x,y)	is	greater	than	the	one	between	

						x	to	all	other	genes	of	B	and	
						y	to	all	other	genes	of	A		
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x	(from	specie	A)	and	y	(from	specie	B)	are	es/mated	orthologs	if:	
	

i.  A	≠	B	
ii.  The	sequence	similarity	s(x,y)	is	greater	than	the	one	between	

						x	to	all	other	genes	of	B	and	
						y	to	all	other	genes	of	A		

Simplifica/on:	leaf	distance	d(x,y)	of	the	(unknown)	gene	tree:	
	

	d(x,y)	=	length	of	the	shortest	path	between	x	and	y	
	
	
	

Graph-based	orthology	inference	 	(e.g.	proteinOrtho)	
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Graph-based	orthology	inference	 	(e.g.	proteinOrtho)	

d	~	1/s	
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x	(from	specie	A)	and	y	(from	specie	B)	are	es/mated	orthologs	if:	
	

i.  A	≠	B	
ii.  The	sequence	similarity	s(x,y)	is	greater	than	the	one	between	

						x	to	all	other	genes	of	B	and	
						y	to	all	other	genes	of	A		

Simplifica/on:	leaf	distance	d(x,y)	of	the	(unknown)	gene	tree:	
	

	d(x,y)	=	length	of	the	shortest	path	between	x	and	y	
	
à	es/mated	orthologs	if:	
	

i.  A	≠	B	
ii.  d(x,y)	is	smaller	than	the	distance	between	

						x	to	all	other	genes	of	B	and	
						y	to	all	other	genes	of	A		

	
	
	

Graph-based	orthology	inference	 	(e.g.	proteinOrtho)	

R	

d	~	1/s	
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1.	Generate	skeleton	trees	

1⋅1	 2⋅1	+	 =	3	

n	=	3	
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1.	Generate	skeleton	trees	
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we	do	not	want:		
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1.	Generate	skeleton	trees	n	 1	

à	Choosing	ai	unordered	elements	of	the	skeleton	trees	with	i	leafs	with	replacement	
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1.	Generate	skeleton	trees	

à	Choosing	2	unordered	elements	of	the	skeleton	trees	with	3	leafs	with	replacement	

n	 1	
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we	do	not	want:		

à	Choosing	ai	unordered	elements	of	the	skeleton	trees	with	i	leafs	with	replacement	
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1.	Generate	skeleton	trees	

2⋅a2	1⋅a1	 (n-1)⋅an-1	

...	 ...	 ...	

n	 1	
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Results	for	n=5	leafs	

ab

a b

b

a

b

b

c

d

Total	number	of	gene	trees	 	:	3543	
	

Non-cograph	cases		 	 	:	822	
	

Number	of	problemclasses	 	:	9	

problemclass	#3	
24	genera9ng	gene	trees	

problemclass	#7	
234	genera9ng	gene	trees	

R		:	



Ques9on	2	:	Can	one	infer	informa9on	about	the	skeleton?		

Theorem:	
		

Given	the	leaf	distance	d1	of	the	skeleton	T1	and	d2	of	T2	then:	
	

d1	=	d2		 	⇒	 	Unroot(	T1	)	~	Unroot	(	T2	)		
	
	
Unroot(	T	)		:		unrooted	version	of	the	tree	T	


