33%

22%

44%

Graph-based Adjustment of Orthology-Relations

 $a_1 a_2$

b₁

b,

 C_1

 C_2

a

Paul Klemm

University of Greifswald, Germany

32th TBI Winterseminar, Bled 2017

 $numST_i + (a_i - 1)$

Phylogenetic, Orthology relation

Cographs

Graph-based orthology inference

Artificial Data Analysis

Enumeration of all gene trees

Results

Summary and Outlook

ArtificialSummaryDataandAnalysisOutlook

ArtificialSummaryDataandAnalysisOutlook

 \rightarrow Simplification: no HGT-event

Artificial Summary Data and Analysis Outlook

 \rightarrow Simplification: no HGT-event

The problem

 \rightarrow Simplification: no HGT-event

We call two genes x and y

- ortholog if lca(x,y) = (speciation)
- paralog if lca(x,y) = (duplication)
- xenolog if $lca(x,y) = \blacktriangle$ (HGT)

e.g. a_2 and b_1 e.g. c_1 and c_2 e.g. b_2 and c_1

Wissen lockt.

Seit 1456

UNIVERSITAT GREIFSWALD

The (distinct, binary, symmetric) event-Relations:

- R_{\bullet} = the set of all (x,y) with lca(x,y) = (speciation)
- R_{-} = ... with lca(x,y) = (duplication)
- R_{A} = ... with lca(x,y) = (HGT)

The event-Relations

Simplification: no HGT-events

→ graph representation of R and R

ArtificialSummaryDataandAnalysisOutlook

Cographs

ArtificialSummaryDataandAnalysisOutlook

Cographs

Wissen lockt.

Seit 1456

ArtificialSummaryDataandAnalysisOutlook

Cographs

not a Cograph

Wissen lockt.

Seit 1456

ArtificialSummaryDataandAnalysisOutlook

Cographs

Wissen lockt.

Seit 1456

ArtificialSummaryDataandAnalysisOutlook

Graph-based orthology inference (e.g. proteinOrtho)

Input : sequence data

Local alignment search (e.g. BLAST)

Sequence similarity s(x,y)

ArtificialSummaryDataandAnalysisOutlook

Graph-based orthology inference (e.g. proteinOrtho)

Input : sequence data

```
Local alignment search
(e.g. BLAST)
```

Sequence similarity s(x,y)

Then two genes x in X and y in Y are **estimated orthologs** if:

- i. they are from different species and
- ii. **s(x,y)** is the ~best score compared to **s(x',y)** and **s(x,y')** where x' in X, y' in Y

Graph-based orthology inference (e.g. proteinOrtho)

Then two genes x and y are **estimated orthologs** if:

- i. they are from different species and
- ii. **s(x,y)** is the ~best score compared to **s(x',y)** and **s(x,y')** where x' in X, y' in Y

Simplification: leaf distance d(x,y) of the "true" gene tree:

d(x,y) =length of the shortest path between x and y

Graph-based orthology inference (e.g. proteinOrtho)

Then two genes x and y are **estimated orthologs** if:

- i. they are from different species and
- ii. **s(x,y)** is the ~best score compared to **s(x',y)** and **s(x,y')** where x' in X, y' in Y

Simplification: leaf distance d(x,y) of the "true" gene tree:

d(x,y) = length of the shortest path between x and y

d ~ 1/**s**

Graph-based orthology inference (e.g. proteinOrtho)

Then two genes x and y are **estimated orthologs** if:

- i. they are from different species and
- ii. **s(x,y)** is the ~best score compared to **s(x',y)** and **s(x,y')** where x' in X, y' in Y

Simplification: leaf distance d(x,y) of the "true" gene tree:

d(x,y) =length of the shortest path between x and y

→ estimated orthologs if:

- i. they are from different species and
- ii. the distance d(x,y) is "small"

ArtificialSummaryDataandAnalysisOutlook

Graph-based orthology inference

Simplification: leaf distance d(x,y) of the "true" gene tree:

d(x,y) = length of the shortest path between x and y

→ estimated orthologs if:

- i. they are from different species and
- ii. the distance d(x,y) is "small"

R:

ArtificialSummaryDataandAnalysisOutlook

Graph-based orthology inference

Simplification: leaf distance d(x,y) of the "true" gene tree:

d(x,y) = length of the shortest path between x and y

→ estimated orthologs if:

- i. they are from different species and
- ii. the distance d(x,y) is "small"

ArtificialSummaryDataandAnalysisOutlook

Graph-based orthology inference

Simplification: leaf distance d(x,y) of the "true" gene tree:

d(x,y) =length of the shortest path between x and y

→ estimated orthologs if:

- i. they are from different species and
- ii. the distance d(x,y) is "small"

Artificial Data Analysis

Summary and Outlook

Question:

How much information can we infer from non-cograph relations ?

How much information can we infer from non-cograph relations ?

Wissen lockt. Seit 1456

UNIVERSITÄT GREIFSWALD

Wissen lockt. Seit 1456

Wissen lockt. Seit 1456

Summary and Outlook

1. Generate skeleton trees

We want:

1. Rooted trees with n leafs

1 + 1 + 1 + 1 = 4

Summary and Outlook

1. Generate skeleton trees

We want:

1. Rooted trees with n leafs

2. All inner nodes should have at least 2 childs

Artificial Data Analysis

Summary and Outlook

1. Generate skeleton trees

We want:

1. Rooted trees with n leafs

2. All inner nodes should have at least 2 childs

3. Only one representative of the isomorphism classes

Summary and Outlook

1. Generate skeleton trees 1 n 2 1 n-1 $2 \cdot a_2$ (n-1) · a_{n-1} $1 \cdot a_1$ = n

Summary

and Outlook

Partition problem:

given an integer n

Question : Obtain all possible ways to write n as sum of 1, ..., n-1

ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD

Summary

and Outlook
Summary and Outlook

> Wissen lockt.

Seit 1456

Summary and Outlook

> Wissen lockt.

Seit 1456

Summary and Outlook

Wissen lockt. Seit 1456

Artificial Data Analysis

Summary and Outlook

2. Generate labels for skeleton trees

We want:

1. Only one representative over all permutations

Artificial Data Analysis

Summary and Outlook

2. Generate labels for skeleton trees

We want:

1. Only one representative over all permutations

Wissen lockt. Seit 1456

Artificial Data Analysis

Summary and Outlook

2. Generate labels for skeleton trees

We want:

1. Only one representative over all permutations

a = b = b = b = a{a riangle b + a}

2. Only one representative of the isomorphism classes

Artificial Data Analysis

Summary and Outlook

3. Coloring the labeled skeleton trees

We want:

No edge with the same event (color) on both ends

Summary and Outlook

3. Coloring the labeled skeleton trees

We want:

No edge with the same event (color) on both ends

= 3-coloring of the inner nodes

Summary and Outlook

Artificial Data Analysis

Summary and Outlook

Results for <u>n=4</u> leafs

Total number of gene trees : 324

Non-cograph cases : 27

Summary and Outlook

Results for <u>n=4</u> leafs

Total number of gene trees : 324

Non-cograph cases : 27

Artificial Data Analysis

Summary and Outlook

Results for <u>n=4</u> leafs

- Total number of gene trees : 324
- Non-cograph cases : 27
- Number of problem classes : 1

Artificial Data Analysis

Summary and Outlook

Results for <u>n=5</u> leafs

- Total number of gene trees : 3543
- Non-cograph cases : 822
- Number of problem classes : 9

Artificial Data Analysis

Summary and Outlook

Artificial Data Analysis

Summary and Outlook

Artificial Data Analysis

Summary and Outlook

Artificial Data Analysis

Summary and Outlook

Summary and Outlook

Question 2 : Can one infer information about the skeleton?

Wissen lockt. Seit 1456

Artificial Data Analysis

Summary and Outlook

Question 2 : Can one infer information about the skeleton?

Wissen lockt.

Seit 1456

Summary and Outlook

Question 2 : Can one infer information about the skeleton?

Consider \widehat{R}_{\bullet} with leaf distance d as additional information.

d(x,y) = length of the shortest path between x and y

Artificial Data Analysis

Summary and Outlook

Question 2 : Can one infer information about the skeleton?

Consider \widehat{R}_{\bullet} with leaf distance d as additional information.

Artificial Data Analysis

Summary and Outlook

> Wissen lockt.

Seit 1456

Question 2 : Can one infer information about the skeleton?

n=5 12 10% 8% 5% 11 20% 24% 32% 30% 10 9% 12% 7% 14% 9 skeleton tree 8 5% 4% 2% 7 5% 4% 2% 6 12% 16% 10% 19% 5 18% 50% 28% 4 3 33% 10% 12% 5% 16% 2 10% 8% 5% 1 66% 40% 100% 100% 24% 16% 30% 33% 38% 2 3 4 5 6 7 8 9 1 class ID

> ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD

n=5 with leaf-distant d UN

Summary and Outlook

Summary:

Artificial

Data Analysis

- Generated all possible gene trees for up to 7 leafs
- No information about right or wrong placed edges in the problem classes
- The leaf distance d gives us the unrooted skeleton tree

For the future:

- Find a more efficent way to generate the leaf-labeling
- Define and investigate more questions

Summary and Outlook

Summary:

Artificial

Data Analysis

- Generated all possible gene trees for up to 7 leafs
- No information about right or wrong placed edges in the problem classes
- The leaf distance d gives us the unrooted skeleton tree

For the future:

- Find a more efficent way to generate the leaf-labeling
- Define and investigate more questions

THANK YOU!

Summary and Outlook

Data Analysis

Artificial

THANK YOU!

Wissen lockt. Seit 1456

ArtificialSummaryDataandAnalysisOutlook

P4-free Graphs / Cographs

Every cograph is uniquely associated with a **cotree** = construction instruction to create the cograph

ArtificialSummaryDataandAnalysisOutlook

P4-free Graphs / Cographs

Every cograph is uniquely associated with a **cotree** = construction instruction to create the cograph

ArtificialSummaryDataandAnalysisOutlook

P4-free Graphs / Cographs

Every cograph is uniquely associated with a **cotree** = construction instruction to create the cograph

ERNST MORITZ ARNDT

ArtificialSummaryDataandAnalysisOutlook

P4-free Graphs / Cographs

Every cograph is uniquely associated with a **cotree** = construction instruction to create the cograph

ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD

ArtificialSummaryDataandAnalysisOutlook

P4-free Graphs / Cographs

Every cograph is uniquely associated with a **cotree** = construction instruction to create the cograph

ArtificialSummaryDataandAnalysisOutlook

P4-free Graphs / Cographs

Every cograph is uniquely associated with a **cotree** = construction instruction to create the cograph

ArtificialSummaryDataandAnalysisOutlook

Graph-based orthology inference (e.g. proteinOrtho)

Input : sequence data

```
Local alignment search
(e.g. BLAST)
```

Sequence similarity s(x,y)

Then two genes x (from species A) and y (from species B) are estimated orthologs if:

- i. A≠B
- ii. The sequence similarity **s(x,y)** is greater than the one between
 - x to all other genes of B and
 - y to all other genes of A

Graph-based orthology inference (e.g. proteinOrtho)

x (from specie A) and y (from specie B) are **estimated orthologs** if:

- i. A ≠ B
- ii. The sequence similarity s(x,y) is greater than the one between x to all other genes of B and y to all other genes of A

Simplification: leaf distance d(x,y) of the (unknown) gene tree:

d(x,y) =length of the shortest path between x and y

Graph-based orthology inference (e.g. proteinOrtho)

x (from specie A) and y (from specie B) are estimated orthologs if:

- i. A ≠ B
- ii. The sequence similarity s(x,y) is greater than the one between x to all other genes of B and y to all other genes of A

Simplification: leaf distance d(x,y) of the (unknown) gene tree:

d(x,y) = length of the shortest path between x and y

d ~ 1/s

Graph-based orthology inference (e.g. proteinOrtho)

x (from specie A) and y (from specie B) are estimated orthologs if:

- i. A ≠ B
- ii. The sequence similarity s(x,y) is greater than the one between x to all other genes of B and y to all other genes of A

Simplification: leaf distance d(x,y) of the (unknown) gene tree:

d(x,y) = length of the shortest path between x and y

→ estimated orthologs if:

- i. A≠B
- ii. d(x,y) is <u>smaller</u> than the distance between x to all other genes of B and y to all other genes of A

d ~ 1/s

ERNST MORITZ ARNDT

Summary and Outlook

1. Generate skeleton trees

n = 3

1.3	+	2 · 0	= 3
1 · 1	+	2·1	= 3

Summary and Outlook

1. Generate skeleton trees

ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD

Artificial Data Analysis

Summary and Outlook

Wissen lockt. Seit 1456

Summary and Outlook

> Wissen lockt.

Seit 1456

Artificial Data Analysis

Summary and Outlook

Summary and Outlook

1. Generate skeleton trees

 \rightarrow Choosing a_i **unordered** elements of the skeleton trees with i leafs **with** replacement

$$\left(\begin{array}{c} numST_i + (a_i - 1) \\ a_i \end{array}\right)$$

Summary and Outlook

1. Generate skeleton trees

- \rightarrow Choosing a_i **unordered** elements of the skeleton trees with i leafs **with** replacement
- \rightarrow Choosing <u>2</u> unordered elements of the skeleton trees with <u>3</u> leafs with replacement

Summary and Outlook

ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD

Artificial Data Analysis

Summary

and Outlook

Results for <u>n=5</u> leafs

- Total number of gene trees : 3543
- Non-cograph cases : 822
- Number of problem classes : 9

Question 2 : Can one infer information about the skeleton?

Theorem:

Given the leaf distance d_1 of the skeleton T_1 and d_2 of T_2 then:

$$d_1 = d_2 \implies Unroot(T_1) \sim Unroot(T_2)$$

Unroot(T): unrooted version of the tree T

