Graph-based Adjustment of

Orthology-Relations

Paul Klemm

University of Greifswald, Germany

32th TBI Winterseminar, Bled 2017

$$
\stackrel{n-1}{\prod}\left(n u m S T_{i}+\left(a_{i}-1\right)\right)
$$

Outline

Introduction

Phylogenetic, Orthology relation Cographs Graph-based orthology inference

Artificial Data Analysis

Enumeration of all gene trees

Results

Summary and Outlook

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

The problem

Introduction

Artificial
Summary
Data and
Analysis Outlook

The problem

\rightarrow Simplification: no HGT-event

Introduction

Artificial
Data
Analysis
Summary and
Outlook

The problem

\rightarrow Simplification: no HGT-event

Introduction

Artificial
Data
Analysis
Summary and Outlook

The problem

\rightarrow Simplification: no HGT-event

We call two genes x and y

- ortholog if Ica(x, y) $=\bullet$ (speciation)
e.g. a_{2} and b_{1}
- paralog if Ica(x, y) $=\square$ (duplication)
e.g. c_{1} and c_{2}
- xenolog if Ica(x,y) = \quad (HGT)

The event-Relations

The (distinct, binary, symmetric) event-Relations:

- $R_{\rho}=$ the set of all (x, y) with Ica $(x, y)=\bullet$ (speciation)
$-R_{\square}=\ldots$ with $\operatorname{lca}(x, y)=\square$ (duplication)
$-R_{\Delta}=\ldots$ with $\operatorname{Ica}(x, y)=\triangle(H G T)$

The event-Relations

Simplification: no HGT-events $\rightarrow \mathrm{R}_{\mathrm{e}}=\overline{\mathrm{R}_{\mathrm{E}}}$
d_{1}

\rightarrow graph representation of R_{6} and $R_{\text {I }}$

Artificial	Summary
Data	and
Analysis	Outlook

Estimation

Artificial	Summary
Data	and
Analysis	Outlook

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Cographs

A graph is called cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\longmapsto \longrightarrow \longmapsto \longrightarrow$)

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Cographs

A graph is called cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\longmapsto \longrightarrow \longmapsto \longrightarrow$)

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Cographs

A graph is called cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\longmapsto \longrightarrow \longmapsto \longrightarrow$)

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Cographs

A graph is called cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\longmapsto \longrightarrow \longmapsto \longrightarrow$)

Artificial	Summary
Data	and
Analysis	Outlook

Artificial	Summary
Data	and
Analysis	Outlook

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Graph-based orthology inference (e.g. proteinOrtho)

Input : sequence data

Local alignment search
(e.g. BLAST)

Sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Graph-based orthology inference (e.g. proteinOrtho)

Input : sequence data

Local alignment search
(e.g. BLAST)

Sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$

Then two genes x in X and y in Y are estimated orthologs if:
i. they are from different species and
ii. $\quad \mathbf{s}(\mathbf{x}, \mathrm{y})$ is the ${ }^{\sim}$ best score compared to $\mathbf{s}\left(\mathrm{x}^{\prime}, \mathrm{y}\right)$ and $\mathbf{s}\left(\mathrm{x}, \mathrm{y}^{\mathbf{\prime}}\right)$ where x^{\prime} in $\mathrm{X}, \mathrm{y}^{\prime}$ in Y

Wissen
lockt.
Seit 14

Introduction

Graph-based orthology inference (e.g. proteinOrtho)

Then two genes x and y are estimated orthologs if:
i. they are from different species and
ii. $\quad \mathbf{s}(\mathbf{x}, \mathrm{y})$ is the ${ }^{\sim}$ best score compared to $\mathbf{s}\left(\mathbf{x}^{\prime}, \mathbf{y}\right)$ and $\mathbf{s}\left(\mathbf{x}, \mathrm{y}^{\prime}\right)$ where x^{\prime} in $\mathrm{X}, \mathrm{y}^{\prime}$ in Y

Simplification: leaf distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ of the „true" gene tree:
$d(x, y)=$ length of the shortest path between x and y

Introduction

Graph-based orthology inference (e.g. proteinOrtho)

Then two genes x and y are estimated orthologs if:
i. they are from different species and
ii. $\quad \mathbf{s}(\mathbf{x}, \mathrm{y})$ is the ${ }^{\sim}$ best score compared to $\mathbf{s}\left(\mathbf{x}^{\prime}, \mathbf{y}\right)$ and $\mathbf{s}\left(\mathbf{x}, \mathrm{y}^{\prime}\right)$ where x^{\prime} in $\mathrm{X}, \mathrm{y}^{\prime}$ in Y

Simplification: leaf distance $d(x, y)$ of the „true" gene tree:
$d(x, y)=$ length of the shortest path between x and y

Introduction

Graph-based orthology inference (e.g. proteinOrtho)

Then two genes x and y are estimated orthologs if:
i. they are from different species and
ii. $\quad \mathbf{s}(\mathbf{x}, \mathrm{y})$ is the ${ }^{\sim}$ best score compared to $\mathbf{s}\left(\mathbf{x}^{\prime}, \mathbf{y}\right)$ and $\mathbf{s}\left(\mathbf{x}, \mathrm{y}^{\prime}\right)$ where x^{\prime} in $\mathrm{X}, \mathrm{y}^{\prime}$ in Y

Simplification: leaf distance $d(x, y)$ of the „true" gene tree:

$$
d(x, y)=\text { length of the shortest path between } x \text { and } y
$$

\rightarrow estimated orthologs if:
i. they are from different species and
ii. the distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is „small"

Introduction

Artificial
Data
Analysis

Summary and Outlook

Graph-based orthology inference

Genes:

Species: B A B C

Simplification: leaf distance $d(x, y)$ of the „true" gene tree:
$d(x, y)=$ length of the shortest path between x and y
\rightarrow estimated orthologs if:
i. they are from different species and
ii. the distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is „small"

Graph-based orthology inference

Genes:
Species:

B A B C
 \widehat{R} :

Simplification: leaf distance $d(x, y)$ of the „true" gene tree:
$d(x, y)=$ length of the shortest path between x and y
\rightarrow estimated orthologs if:
i. they are from different species and
ii. the distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is „small"

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Graph-based orthology inference

Genes:
Species:

Simplification: leaf distance $d(x, y)$ of the „true" gene tree:
$d(x, y)=$ length of the shortest path between x and y
\rightarrow estimated orthologs if:
i. they are from different species and
ii. the distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is „small"

Artificial Data Analysis

Summary
and Outlook

Question:
How much information can we infer from non-cograph relations?

How much information can we infer from non-cograph relations?

Artificial Data Analysis
Summary and Outlook

1. Generate skeleton trees

We want:

1. Rooted trees with n leafs

Artificial Data Analysis

1. Generate skeleton trees

We want:

1. Rooted trees with n leafs

2. All inner nodes should have at least 2 childs

Artificial Data Analysis

1. Generate skeleton trees

We want:

1. Rooted trees with n leafs

2. All inner nodes should have at least 2 childs

3. Only one representative of the isomorphism classes

Artificial Data Analysis
Summary and Outlook

1. Generate skeleton trees

1
2
n-1

Artificial Data Analysis
Summary and Outlook

1. Generate skeleton trees

| 1 | 2 | $n-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 \cdot a_{1}$ | $2 \cdot a_{2}$ | |
| \vdots | + | $(n-1) \cdot a_{n-1}=n$ |

1. Generate skeleton trees

1 | 1 | 2 | $n-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 \cdot a_{1}$ | $2 \cdot a_{2}$ | |
| $+1 n-1) \cdot a_{n-1}$ | $=n$ | |

Partition problem:

given an integer n
Question : Obtain all possible ways to write n as sum of $1, \ldots, n-1$

Introduction
 Artificial Data Analysis
 Summary and Outlook

1. Generate skeleton trees

1. Generate skeleton trees

Artificial Data Analysis
Summary and Outlook

1. Generate skeleton trees

Artificial Data Analysis

Summary and Outlook

2. Generate labels for skeleton trees

We want:

1. Only one representative over all permutations

Artificial Data Analysis

Summary and Outlook

2. Generate labels for skeleton trees

We want:

1. Only one representative over all permutations

Artificial Data Analysis

Summary and Outlook

2. Generate labels for skeleton trees

We want:

1. Only one representative over all permutations

2. Only one representative of the isomorphism classes

Artificial Data Analysis
 Summary and Outlook

 3. Coloring the labeled skeleton trees

We want:

No edge with the same event (color) on both ends

$=$

Introduction
 Artificial Data Analysis

We want:

No edge with the same event (color) on both ends

= 3-coloring of the inner nodes

Overview

gene trees

 \title{
Artificial Data Analysis
}
 \title{
Artificial Data Analysis
}

Results for $\underline{n=4}$ leafs

Total number of gene trees : 324
Non-cograph cases : 27

Artificial Data Analysis

Summary
and Outlook

Results for $\mathrm{n}=4$ leafs

Total number of gene trees : 324
Non-cograph cases : 27

Artificial Data Analysis

Summary and Outlook

Results for $\underline{\mathrm{n}=4}$ leafs

Total number of gene trees : 324
Non-cograph cases : 27
Number of problemclasses : 1

problemclass \#1
27 generating gene trees

Wissen
lockt.
Seit 1456

Results for $\underline{n=5}$ leafs
Total number of gene trees : 3543
Non-cograph cases : $\mathbf{8 2 2}$
Number of problemclasses : 9

Question 1 : Is there a preference of right/wrong edges?

Question 1 : Is there a preference of right/wrong edges?

Artificial Data Analysis

Summary and Outlook

Question 1 : Is there a preference of right/wrong edges?

problemclass \#1
27 generating gene trees

Artificial Data Analysis

Summary and Outlook

Question 1 : Is there a preference of right/wrong edges?

problemclass \#3
24 generating gene trees

problemclass \#7
234 generating gene trees

Artificial Data Analysis

Question 2 : Can one infer information about the skeleton?

Artificial Data Analysis

Summary and Outlook

Question 2 : Can one infer information about the skeleton?

problemclass \#1
27 generating gene trees

Artificial Data Analysis

Summary

Question 2 : Can one infer information about the skeleton?

Consider \widehat{R} with leaf distance d as additional information.

$$
\begin{gathered}
d(x, y)= \\
\text { length of the shortest path } \\
\text { between } x \text { and } y
\end{gathered}
$$

problemclass \#1
27 generating gene trees

Artificial Data Analysis

Question 2 : Can one infer information about the skeleton?

Consider \widehat{R}_{\bigcirc} with leaf distance d as additional information.

Artificial Data Analysis

Summary and Outlook

Question 2 : Can one infer information about the skeleton?

Question 2 : Can one infer information about the skeleton?

$\mathrm{n}=5$

Question 2 : Can one infer information about the skeleton?

Question 2 : Can one infer information about the skeleton?

Question 2 : Can one infer information about the skeleton?

Summary and Outlook

Summary:

> Generated all possible gene trees for up to 7 leafs
$>$ No information about right or wrong placed edges in the problemclasses
$>$ The leaf distance d gives us the unrooted skeleton tree

For the future:

> Find a more efficent way to generate the leaf-labeling
> Define and investigate more questions

Summary and Outlook

Summary:

> Generated all possible gene trees for up to 7 leafs
$>$ No information about right or wrong placed edges in the problemclasses
$>$ The leaf distance d gives us the unrooted skeleton tree

For the future:

> Find a more efficent way to generate the leaf-labeling
> Define and investigate more questions

THANK YOU!

Summary and Outlook

THANK YOU!

Introduction

Artificial
Data
Analysis
Summary and
Outlook

P4-free Graphs / Cographs

A graph is called P4-free / cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\bullet \longrightarrow \square \longrightarrow$)

Every cograph is uniquely associated with a cotree = construction instruction to create the cograph

- 5

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

P4-free Graphs / Cographs

A graph is called P4-free / cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\longmapsto \longrightarrow \longmapsto \longrightarrow \longrightarrow)$

Every cograph is uniquely associated with a cotree = construction instruction to create the cograph

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

P4-free Graphs / Cographs

A graph is called P4-free / cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\bullet \longrightarrow \square \longrightarrow$)

Every cograph is uniquely associated with a cotree = construction instruction to create the cograph

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

P4-free Graphs / Cographs

A graph is called P4-free / cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\bullet \longrightarrow \square \longrightarrow$)

Every cograph is uniquely associated with a cotree = construction instruction to create the cograph

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

P4-free Graphs / Cographs

A graph is called P4-free / cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\bullet \longrightarrow \square \longrightarrow$)

Every cograph is uniquely associated with a cotree = construction instruction to create the cograph

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

P4-free Graphs / Cographs

A graph is called P4-free / cograph if and only if there exists no induced subgraph on 4 nodes that is a P4 ($\bullet \longrightarrow \square \longrightarrow$)

Every cograph is uniquely associated with a cotree = construction instruction to create the cograph

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Estimation

Artificial	Summary
Data	and
Analysis	Outlook

Introduction

Artificial	Summary
Data	and
Analysis	Outlook

Graph-based orthology inference (e.g. proteinOrtho)

Input : sequence data

Local alignment search
(e.g. BLAST)

Sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$

Then two genes x (from species A) and y (from species B) are estimated orthologs if:
i. $A \neq B$
ii. The sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$ is greater than the one between
x to all other genes of B and
y to all other genes of A

Introduction

Artificial
Data
Analysis

Graph-based orthology inference (e.g. proteinOrtho)

x (from specie A) and y (from specie B) are estimated orthologs if:
i. $A \neq B$
ii. The sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$ is greater than the one between x to all other genes of B and y to all other genes of A

Simplification: leaf distance $d(x, y)$ of the (unknown) gene tree:
$d(x, y)=$ length of the shortest path between x and y

Introduction

Graph-based orthology inference (e.g. proteinOrtho)

x (from specie A) and y (from specie B) are estimated orthologs if:
i. $A \neq B$
ii. The sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$ is greater than the one between x to all other genes of B and y to all other genes of A

Simplification: leaf distance $d(x, y)$ of the (unknown) gene tree:
$d(x, y)=$ length of the shortest path between x and y

Introduction

Graph-based orthology inference (e.g. proteinOrtho)

x (from specie A) and y (from specie B) are estimated orthologs if:
i. $A \neq B$
ii. The sequence similarity $\mathbf{s}(\mathbf{x}, \mathbf{y})$ is greater than the one between x to all other genes of B and y to all other genes of A

Simplification: leaf distance $d(x, y)$ of the (unknown) gene tree:
$d(x, y)=$ length of the shortest path between x and y
\rightarrow estimated orthologs if:
i. $A \neq B$
ii. $d(x, y)$ is smaller than the distance between x to all other genes of B and y to all other genes of A

1. Generate skeleton trees

$$
n=3
$$

$$
\begin{aligned}
& 1 \cdot 3+2 \cdot 0=3 \\
& 1 \cdot 1+2 \cdot 1 \quad=3
\end{aligned}
$$

1. Generate skeleton trees

$$
n=3
$$

Artificial Data Analysis
Summary and Outlook

1. Generate skeleton trees

1. Generate skeleton trees

Artificial Data Analysis

Summary and Outlook

1. Generate skeleton trees

we do not want:

> Wissen lockt.
lockt.
Seit 1456

Artificial Data Analysis

1. Generate skeleton trees

\rightarrow Choosing a_{i} unordered elements of the skeleton trees with i leafs with replacement

$$
\binom{n u m S T_{i}+\left(a_{i}-1\right)}{a_{i}}
$$

Artificial Data Analysis

1. Generate skeleton trees

\rightarrow Choosing a_{i} unordered elements of the skeleton trees with i leafs with replacement
\rightarrow Choosing $\underline{2}$ unordered elements of the skeleton trees with $\underline{\underline{3}}$ leafs with replacement

$$
\binom{n u m S T_{i}+\left(a_{i}-1\right)}{a_{i}}=3
$$

3
(1+1+2

Artificial Data Analysis

Summary and Outlook

1. Generate skeleton trees

$$
\operatorname{numST} T_{n}=\sum_{\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \in P^{n}} \prod_{i=1}^{n-1}\binom{n u m S T_{i}+\left(a_{i}-1\right)}{a_{i}}
$$

Artificial Data Analysis

Summary

Results for $\underline{\mathrm{n}=5}$ leafs

Total number of gene trees	$: \mathbf{3 5 4 3}$
Non-cograph cases	$: \mathbf{8 2 2}$
Number of problemclasses	$: \mathbf{9}$

problemclass \#3
24 generating gene trees

problemclass \#7
234 generating gene trees

Question 2 : Can one infer information about the skeleton?

Theorem:

Given the leaf distance d_{1} of the skeleton T_{1} and d_{2} of T_{2} then:

$$
\mathrm{d}_{1}=\mathrm{d}_{2} \Rightarrow \operatorname{Unroot}\left(\mathrm{~T}_{1}\right) \sim \operatorname{Unroot}\left(\mathrm{T}_{2}\right)
$$

Unroot(T) : unrooted version of the tree T

