Generative adversarial training on structured domains

<u>Stefan Mautner</u> Fabrizio Costa mautner@informatik.uni-freiburg.de f.costa@exeter.ac.uk

Freiburg University 2017-02-16

Constructive Machine Learning

- What: answer design questions using examples
- We are interested in: constructive approaches for structured domains
- In chemo- and bio-informatics: synthesize molecules with a desired bio-activity

Assumed work

EDeN (Explicit Decomposition with Neighborhoods)¹

- Vectorizes Graphs
- Used when training model from graphs
- (not discussed here)
- GraphLearn ²
 - generates instances given examples
 - (overview given here)
- This is a sampling extension for GraphLearn

¹github.com/fabriziocosta/EDeN

 $^{^2 {\}rm github.com}/{\rm fabriziocosta}/{\rm GraphLearn}$

The Problem

- Density estimation based on observed graphs (preferably few, "positive" class only)
- Implies loose constraints on feasible manyfold
- Question: How tighten constraints?

³Yann Le Cun, NIPS 2016 Keynote (modified)

Generative ANN architectures

- Fully visible belief networks (FVBNs)
- Variational autoencoders
- Generative adversarial networks GANs

⁴Al Gharakhanian, Blogpost, Dec 2016
⁵Ian Goodfellow, NIPS 2016

GAT on structured domains

- The graph generation guiding model might be not tight enough
- ANN researchers inspired us by addressing a very similar problem using GANs
- Proposal: Generate instances and assume they are negative examples to improve the generation guiding model

The constructive learning problem for finite samples⁶

- Given a set of graphs G
- use a parametrized generator M_{θ} to construct set G_{θ}
- find optimal θ to jointly satisfy:
 - 1. probability density is the same if estimated over G or G_{θ}
 - 2. G_{θ} differs from G
- Optimize:

 $\arg \min_{\theta} L(P(G), P(G_{\theta})) + \lambda Sim(G, G_{\theta})$

where:

- L is a loss over probability distributions (e.g. symmetric Kullback Leibler divergence)
- Sim is a set graph kernel
- λ is desired trade off

⁶Costa Artif. Intell. 2016

Parametrized Generator for Graphs

- ► Instead of generating → sample from a corresponding probability distribution over graphs
- ► We use Metropolis Hastings (MH) Markov Chain Monte Carlo (MCMC)
 - 1. start from seed graph x
 - 2. propose according to $g(x \mapsto x')$
 - 3. accept according to:

$$A(x \mapsto x') = \min(1, \frac{P(x')}{P(x)} \frac{g(x \mapsto x')}{g(x' \mapsto x)})$$

- Q: how not to reject proposed graphs too often?
- A: use graph grammar induced from data for $g(x \mapsto x')$

Graph Grammar

A graph grammar is a finite set of productions P=(M,D,E)

- M=mother graph
- D=daughter graph
- E=embedding mechanism

Substitutable Graph Grammar

- ► cores (neighborhood graphs) can be substituted ..
- ... if they have the same interface graph

Generative adversarial training

Input: train; a set of observed instances

- 1. train one class model on train
- 2. use train as seeds for generation
- 3. train two class model on *train* (classlabel 1) and all generated instances (classlabel 0)
- 4. use train as seeds for generation
- 5. goto 3

Training accuracy on internal models

Are generated instances similar to the observed instances?

lower accuracy indicates that the sets are becoming harder to separate

⁷500 graphs in train set, 3 repeats, pubchem aid 651610

Test accuracy on internal model

Is the observed class actually learned? ⁸

Lower training accuracy coincides with higher test accuracy

⁸note that the training process has never seen any real negative instances

Conclusion

- Generative adversarial training effective in tightening generation contrains
- Test on larger data set required

The End

Thank you

Greetings from Freiburg :D