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Introduction

RNAs - structural diversity, usually important at a functional level

Thermodynamic equilibrium (McCaskill,
1990): partition function
→ base-pairing probabilities within
Boltzmann ensemble

E

structure

You are here forever

MFE
valley

Equilibrium assumption not always valid:
I Riboswitches: 2 conformations with significant ∆G, both active yet

difference unmitigated by sole presence/absence of ligand.
I Co-transcriptional folding would not happen at equilibrium!

Also, RNA degrades quickly - MFE frequently not achieved

Importance of kinetic effects in formation of RNA structure

Study RNA folding kinetics
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RNA kinetics study

RNA kinetics analysis methods - 2 classes:

Simulation methods (statistical) - simulates RNA folding base by
base/helix by helix
→ #trajectories required for reproducibility increases fast

4-step plan (approximative):
I Sampling of representative set of structures
I Assembling of representation of RNA folding landscape from samples
I Estimation of transition rates between different parts of folding

landscape representation
I Investigation, notably evolution of concentrations during time

sampling quality is essential, following steps depend on it:

I Missing functional structure Losing part of RNA folding space

I Missing transitive structure Energy barrier overestimation
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Diversity is problematic

Suboptimal structures
(Wuchty et al., 1999)

Combinatorial explosion

Stochastic Sampling (Ding and
Lawrence, 2003): Saturation

High redundancy 0 10 20 30 40 50
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(Kucharik et al., 2014)

Most of sampling strategies: P(sample) ∝ e
−E
RT

Problem: oversampling of structures close to MFE

To overcome this problem: Non-redundant sampling
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Concepts

Secondary structure (in this context):
Set of base pairs within an RNA sequence with following restictions

Only pairs ∈ {{C ,G}, {A,U}, {G ,U}} permitted

No base triplets

No pseudoknots

C C C A G A G G G A U A U G G A C A C C C

Orange and blue paths cannot coexist within the same structure
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Locally optimal secondary structures

Local Minimum (LM) in RNA folding space

neighboring
secondary
structures

E
Local Minima (LM)

Minimal free energy within
neighborhood

Neighbors of structure: All
structures obtained by single
base pair addition/removal

Energy model: Base pair maximization: RNANR → Nussinov LMs. . .
. . . but also w.r.t. Turner model: RNAlocopt (WA. Lorenz et al., 2011),
RNAlocmin (Kucharik et al., 2014) → Turner LMs
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Flat structures

Beyond this point: min. helix length = 3 & stems of length 3

considered together

Nussinov model: Decomposition of secondary structures into flat
structures, i.e. maximal by juxtaposition (Saffarian et al., 2012):

CGUUAGCUAGCAGGCAUAUGCAUCGCGAUCGUAGCCGCCGAUAUGUGACGACGACGACUA

AUCGCGAUCGUAGCCGCCGAUAUGUGAC GCGAUCGUAGCCGCCGAUAUGU GAUCGUAGCCGCCGAUA
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Decomposition of local minima

Central idea:

Generate all flat structures for RNA sequence (Saffarian et al., 2012)

Find free energy Ef of each flat structure f (≈ loops in Turner model)
. . . based on new interface to Vienna RNA package 1

Combine flat structures in any possible ways to obtain complete
Nussinov local minima (while keeping track of free-energy)

Local optimality ensured by saturation of all flat structures

Cannot add any new base pair without creating a conflict

How to sample Nussinov Local Minima?

1Thanks Ronny!
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Dynamic programming scheme for flat structure assembly

i j

i ji1 j1

i ji1 j1 i2 j2

i j

i j

Fij

f1

f2

f3

f4 = ∅

Zi,j =
∑

f∈Fij
e−Ef /RT

{∏
[k,l ]∈f Zk,l if f 6= ∅

1 if f = ∅

Memory complexity: O(n2)
Time complexity: O(|F |.n)
∈ O(|F |.max(#MLbranches))

F = Set of flat structures

[...]
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Statistical Sampling of Nussinov LMs

Partition function

Z =
∑
s∈S

e
−Es
kBT

S = space of secondary structures s
Es = energy of specific state s
kB = Arbitrary constant
T = Absolute temperature

Here, S = Nussinov LMs secondary struc-
tures under structural restrictions Space S of secondary

structures of interest s
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Statistical Sampling of Nussinov LMs

Secondary structure s of RNA sequence

Zs = Z
P(s) = 1

Space S of secondary
structures of interest s
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Statistical Sampling of Nussinov LMs

Secondary structure a of RNA sequence

Secondary structure a1 of RNA sequence

P(a) = Za

Zs
= Za

Z

P(a1) =
Za1

Zs
=
Za1

Z
A
⋂
A1 = ∅

P(a) + P(a1) < 1

Space A of secondary structures a
Space A1 of secondary structures a1

A ⊂ S, A1 ⊂ S
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Statistical Sampling of Nussinov LMs

Secondary structure b of RNA sequence

Secondary structure b1 of RNA sequence

P(b|a) = Zb
Za

, P(b1|a) =
Zb1
Za

B
⋂
B1 = ∅, P(b) + P(b1) < P(a)

P(b) = P(b|a).P(a) = Zb
Za
.Za
Z = Zb

Z

Space B of secondary structures b
Space B1 of secondary structures b1

B ⊂ A ⊂ S, B1 ⊂ A ⊂ S
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Statistical Sampling of Nussinov LMs

Secondary structure c of RNA sequence

P(c |b) = Zb
Zc

P(c) = P(c|b).P(b|a).P(a) = Zc
Z

Space C of secondary structures c
C ⊂ B ⊂ A ⊂ S
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Non-redundant sampling

Each structure picked up at most once Faster access to
structures with higher E

E

Structure

Non-redundant sampling

Classical sampling

Distribution

Problem: Avoid choosing sample after first selection

Solution : After generation of a given structure S , adjust probabilities of
flat structures depending on their capacity to generate S again.

So, how to adjust the probabilities?
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Non-redundant sampling

a b

b1 b2

a ∈ A ⊂ S
b ∈ B ⊂ S

b1 ∈ B1 ⊂ B ⊂ S
b2 ∈ B2 ⊂ B ⊂ S

∑
Boltzmann factors
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Non-redundant sampling

a b

b1 b2

∑
Boltzmann factors

b2 sampled
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Non-redundant sampling

a b

b1 b2

∑
Boltzmann factors

Contribution of b2 sub-
stracted where still obtain-

able for the rest of cycle

Boltzmann factor
of a unaffected

Juraj Michalik Non-redundant sampling February 14, 2017 13 / 21



Non-redundant sampling

a b

b1

∑
Boltzmann factors

b2 not accessible any-
more, next run returns b1

Efficient access to the probabilities of generated LMs through dedicated
data structure (no complexity overhead... details on demand)

Juraj Michalik Non-redundant sampling February 14, 2017 13 / 21



Results
Implementation – RNANR

__ __ __ __ __ __ __ __ __ __ __ __ __

/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/

______ __ _ ____ __ _ ______

| __ \ | \ | | / __ \ | \ | | | __ \

| |__| | | \ | | / |__| \ | \ | | | |__| |

| _ / | |\ \| | | __ | | |\ \| | | _ /

| | \ \ | | \ | | | | | | | \ | | | \ \

|_| \__\ |_| \__| |_| |_| |_| \__| |_| \__\

__ __ __ __ __ __ __ __ __ __ __ __ __

/_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/ /_/

C implementation, based on Vienna package’s RNAlib

Non-redundant sampling, exhaustive enumeration, counting,
expressive structural restrictions

Availability:
https://project.inria.fr/rnalands/software/rnanr/
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Results
Structural Restrictions

Space reduction using structural restrictions → complexity reduction!

Minimum helix length α, max #branches within multiloop γ

Reminder: min helix length = 3

Statistics on RNAStrand (Andronescu et al., 2006)
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Exhaustive LMs enumeration
Test on SV11

SV11 has active metastable (MS) state at 28.5 kcal.mol−1 of MFE

MS-like conformations unreachable for sampling algorithms

Currently, numerical precision issues with non-redundant sampling
→ Exhaustive enumeration in restricted folding space

Structural restrictions: min. helix length = 4, max #branches within
multiloop = 4

Results:

GGGCACCCCCCUUCGGGGGGUCACCUCGCGUAGCUAGCUACGCGAGGGUUAAAGGGCCUUUCUCCCUCGCGUAGCUAACCACGCGAGGUGACCCCCCGAAAAGGGGGGUUUCCCA

(((.(((((((.(((((((((((((((((((...((((((((((((((..(((.....)))..))))))))))))))...)))))))))))))))))))...)))))))..))).

(((((((((((...)))))))..((((((((((....))))))))))........)))).....((((((((.(....).)))))))).((((((((.....)))))))).....

(((((((((((...))))))).(((((((((((....))))))).))))......)))).....((((((((........)))))))).((((((((.....)))))))).....

Real structure
Returned structure
MFE
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Comparison of Nussinov and Turner Local Minima

Method: Sampling Nussinov LMs + Gradient descent2

→ Final structure, ie Turner Local Minimum

Samples% ∆∆G Base pair dist.
avg (std.dev) avg (std.dev) avg (std.dev)

Within search space 59.57% (21.00) 0.071 (0.309) 0.129 (0.289)
Outside search space 40.42% (21.00) 1.248 (0.925) 1.550 (0.619)
Global average 100.00% (–) 0.547 (0.817) 0.703 (0.757)

More than half Nussinov LMs (52.4%) are also Turner LMs

On average, a Nussinov LM is at ≤0.55kcal.mol−1 and 0.7 base pairs
to its closest Turner

When the final structure is in the search space, Nussinov LMs are
almost always Turner LMs (≈90%)

2Vienna package – Thanks Ronny and Gregor!
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Theoretical speedup

T (K ) :#redundant structures to obtain K #unique structures
Speed-up: T (K )/K = Avg #times a structure is (redundantly) sampled
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Bigger speedup with higher
coverage
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Practical speedup and complexity
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Conclusion

New features

Considerable speed up for the exploration of RNA folding landscapes

Expressive structural restriction without added cost

Philosophical speedbump

Exponential vs polynomial

Non-redundant sampling can be easily implemented to any already
existing sampling method

Non-redundant sampling for statistical estimates: Does losing
redundancy mean losing information?

In progress ... LOADING

Numerical stability issues when Boltzmann factors become too low

Validation of our local minima for kinetics analysis

Non-redundant sampling for Turner model, χ scheduling. . .
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