Locality Glitch

in

Established RNA Energy Models

Milad Miladi

University of Freiburg

32nd TBI Winterseminar in Bled, F ebruary 2017

0

Motivation: Improving local alignment of RNAs

Genomic context

Shuffled genomic context

Inspected RNA

- A *tRNA* with its typical cloverleaf secondary structure
- Evaluate probability of two base-pairs from:
 - Acceptor stem
 - Anticodon stem

Experiment: Extension

- Shuffled genomic context of the tRNA
- tRNA positioned
 - in the proximity of the midpoint
 - according to a normal distribution

Probability of the selected base-pair (global folding)

Experiment: Insertion

• Shuffled genomic context of the tRNA is inserted into the Anticodon loop

Probability of the selected base-pair (global folding)

Observations

- Locality: (extend test)
 - A relatively short context can distort the acceptor signal
 - Specially for the closing stems of multi-loops

- Anti-locality: (insert test)
 - Independent of a sequence and content
 - Few distant compatible base-pairs make an strong prediction

7

Irreversibility hypothesis:

Base pairing probability computation

- 1. Markov chain of base-pair probabilities is not reversible
- 2. Computing the Markov chain with McCaskill's *outside* algorithm causes the locality problem (to some extend)

Irreversibility hypothesis:

Base pairing probability computation

- 1. Markov chain of base-pair probabilities is not reversible
- 2. Computing the Markov chain with McCaskill's *outside* algorithm causes the locality problem (to some extend)

Shown to not be a valid hypothesis

Models multiloop parameters

Multiloop free energy = cu*n_unpaired + cc + ci*loop_degree

Model	cu	CC	ci
Turner-1999	0	340	40
Turner-2004	0	930	-90
Andronescu-2007	4	440	3
Quake (Patched Turner)	50	930	-190

- (*) In fact Turner's lab proposed two versions of Multiloop scores:
 - Efficient version with a constant unpaired probability with value zero
 - Detailed version similar to inner-loop case
- More precisely, due to efficiency reasons, the dynamic programming variation of Turner model consider no penalty for unpaired region of Multiloops

Probability of the selected base-pair (global folding, Quake)

Basepair accuracy (=expected sensitivity)

*Lange, Maticzka, Möhl et al. NAR-2012

Localfold CisReg dataset

Conclusion

- Well the established energy models seems to be leaned toward positive set of RNA strands, i.e. with nice boundaries
- Not considering a penalty for unpaired bases of Multiloops can result in favoring large multiloops and long base-pair interactions
- This yields into challenges for the local folding problem or probably in general for structure prediction of long RNA sequences

What can comes next?

- New Turner parameter set with less sensitivity to negative sequences?
- An implementation of folding algorithms supporting more exact Multiloop energy model?

Thanks for your attention!

