(RNA-) Structuredness in Viruses

Roman Ochsenreiter

TBI Wien University of Vienna

16.2.2017 / TBI Winterseminar

Viruses I

Minimal Life Forms

- Obligate intracellular parasites
- No organelles
- (Very) small size
- DNA/RNA genomes

Electron micrograph of an Ebola Virion, size: 1000 nm (image source: wikipedia)

Viruses II Minimal Life Forms

Figure: Crystal Structure and Schematic of Rhinovirus A 1

Genome size (nt): Human: 3.2×10^9 Rhinovirus: 7×10^3

¹Zhao et al. 1996

Viruses and RNA Structure

- Viruses have tightly packed genomes
- Specific Functions are often provided by RNA Structures

Figure: Pestivirus IRES¹, Rhinovirus CRE-Element

¹Rfam IDs: RF00209, RF00220

Baltimore Classification

Baltimore Classification

Viral Phylogeny

Figure: Picorna-like Viruses (left)1, Flavivirus (right

¹Fauquet, Schrock; 2006

Viral Phylogeny

Virus Ortholog Groups

Viral Clusters of Ortholog Groups

- Groups of Ortholog proteins
- Calculated on Protein alignments
- Based on newest RefSeq Virus Genomes
- Includes all annotated viral species

Virus Ortholog Groups

Virus Ortholog Groups

Viral Ortholog Proteins (mRNA) MPI 4000 3000 Counts 60 20 40 80 100 MPI

Viral Ortholog Proteins

Conserved sub-alignments

- No overall consensus structure but...
- Strong structure conservation in subparts of the alignment!

Viruses and structured RNAs

More than UTRs...

The Problem

- Viruses are a highly diverse group of organisms
- Just a fraction is investigated for ncRNAs
- UTRs get the most attention

Aims

- Screen all viruses for structured RNAs
- Take a close look at CDS regions

Methods

- RNAz
- R-scape

Dataset

Isolation Pipeline

- Fetch Species from NCBI taxonomy database
- Petch Refseq Sequences
- Fetch genomes from NCBI Nucleotide Database
- Align with clustal Omega
- Multiple consistency checks in-between

Name	#Species
NCBI Tax DB	18939
Refseq DB	8299
Consistent Species	1580

Type	#Species	
dsDNA	422	
ssDNA	276	
dsRNA	142	
ssRNA	600	
RT	81	
Satellites	32	

Results

Results

Results

	#Hits	w/ Cov (G)	w/ Cov (RAF)
Total Hits	73564	4216	43554
CDS	69941	4806	41579
UTR	3664	410	1975

Summary & Outlook

Summary

- Structured Elements are widespread in Viruses
- Lots of Covariation in most elements!
- CDS and UTRs are equally affected

Outlook

- Check again with structure-based alignments
- Build covariance models for all significant loci
- Search for 'structural orthologs'

Acknowledgements

Thanks to...

- Ivo Hofacker
- Michael Kiening (LMU Munich)
- Dimitrji Frishman (LMU Munich)
- Hans-Jörg Hellinger (Uni Wien)
- Thomas Rattei (Uni Wien)

...and you!

