(RNA-) Structuredness in Viruses

Roman Ochsenreiter

TBI Wien
University of Vienna
16.2.2017 / TBI Winterseminar

Viruses I

Minimal Life Forms

- Obligate intracellular parasites
- No organelles
- (Very) small size
- DNA/RNA genomes

Electron micrograph of an Ebola Virion, size: 1000 nm
(image source: wikipedia)

Viruses II

Minimal Life Forms

Figure: Crystal Structure and Schematic of Rhinovirus A ${ }^{1}$

Genome size (nt): Human: 3.2×10^{9} Rhinovirus: 7×10^{3}
${ }^{1}$ Zhao et al. 1996

Viruses and RNA Structure

- Viruses have tightly packed genomes
- Specific Functions are often provided by RNA Structures

Figure: Pestivirus IRES ${ }^{1}$, Rhinovirus CRE-Element

[^0]
Viral Diversity

Baltimore Classification

Class

Viral Diversity

Baltimore Classification

Class

Viral Diversity

Viral Phylogeny

Figure: Picorna-like Viruses (left) ${ }^{1}$, Flavivirus (right
${ }^{1}$ Fauquet, Schrock; 2006

Viral Diversity

Viral Phylogeny

Virus Ortholog Groups

Viral Clusters of Ortholog Groups

- Groups of Ortholog proteins
- Calculated on Protein alignments
- Based on newest RefSeq Virus Genomes
- Includes all annotated viral species

Virus Ortholog Groups

Viral Ortholog Proteins (mRNA) MPI vs SCI

Virus Ortholog Groups

Viral Ortholog Proteins (mRNA) SCI

Viral Ortholog Proteins (mRNA) MPI

Viral Ortholog Proteins

Conserved sub-alignments

$\mathrm{SCI}=0.9$

$$
\mathrm{SCI}=0.0
$$

$$
\mathrm{SCI}=0.1
$$

- No overall consensus structure but. . .
- Strong structure conservation in subparts of the alignment!

Viruses and structured RNAs

More than UTRs. . .

The Problem

- Viruses are a highly diverse group of organisms
- Just a fraction is investigated for ncRNAs
- UTRs get the most attention

Aims

- Screen all viruses for structured RNAs
- Take a close look at CDS regions

Methods

- RNAz
- R-scape
(1) Fetch Species from NCBI taxonomy database
(2) Fetch Refseq Sequences

Name	\#Species
NCBI Tax DB	18939
Refseq DB	8299
Consistent Species	1580

(3) Fetch genomes from NCBI Nucleotide Database
(4) Align with clustal Omega
(5) Multiple consistency checks in-between

Type	\#Species
dsDNA	422
ssDNA	276
dsRNA	142
ssRNA	600
RT	81
Satellites	32

Results

Significant Hit size

Results

\#RNAz hits vs. Genome Length

Results

	\#Hits	w/ Cov (G)	w/ Cov (RAF)
Total Hits	73564	4216	43554
CDS	69941	4806	41579
UTR	3664	410	1975

Summary \& Outlook

Summary

- Structured Elements are widespread in Viruses
- Lots of Covariation in most elements!
- CDS and UTRs are equally affected

Outlook

- Check again with structure-based alignments
- Build covariance models for all significant loci
- Search for 'structural orthologs'

Acknowledgements

Thanks to...

- Ivo Hofacker
- Michael Kiening (LMU Munich)
- Dimitrji Frishman (LMU Munich)
- Hans-Jörg Hellinger (Uni Wien)
- Thomas Rattei (Uni Wien)
... and you!

[^0]: ${ }^{1}$ Rfam IDs: RF00209, RF00220

