COMPARISON OF GENE FUSION DETECTION TOOLS TO DETECT NOVEL GENE FUSIONS USING A CUSTOM ANNOTATION

- current state -

17.02.2017

Carolin Schimmelpfennig

c.schimmelpfennig@izi.fraunhofer.de

- First described in chronic myeloid cancer cells
- Hybrid formed of two or more different genes

Source: Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

Picturesource: By SocratesJedi - Own work; Rendering of PDB 3CS9, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17161180

- Causes of gene fusions:
 - Genomic rearrangements

Based on: The emerging complexity of gene fusions in cancer ;Fredrik Mertens, Bertil Johansson, Thoas Fioretos Felix Mitelman; Nature Reviews Cancer 15,371–381 (2015); doi:10.1038/nrc3947

- Causes of gene fusions:
 - Genomic rearrangements

Based on: The emerging complexity of gene fusions in cancer ;Fredrik Mertens, Bertil Johansson, Thoas Fioretos Felix Mitelman; Nature Reviews Cancer 15,371–381 (2015); doi:10.1038/nrc3947

- Causes of gene fusions:
 - Genomic rearrangements

Based on: The emerging complexity of gene fusions in cancer ;Fredrik Mertens, Bertil Johansson, Thoas Fioretos Felix Mitelman; Nature Reviews Cancer 15,371–381 (2015); doi:10.1038/nrc3947

- Causes of gene fusions:
 - Read-through / trans-splicing

Based on: The emerging complexity of gene fusions in cancer ;Fredrik Mertens, Bertil Johansson, Thoas Fioretos Felix Mitelman; Nature Reviews Cancer 15,371–381 (2015); doi:10.1038/nrc3947

- Causes of gene fusions:
 - Read-through / trans-splicing

read-through transcription

Based on: The emerging complexity of gene fusions in cancer ;Fredrik Mertens, Bertil Johansson, Thoas Fioretos Felix Mitelman; Nature Reviews Cancer 15,371–381 (2015); doi:10.1038/nrc3947

- Causes of gene fusions:
 - Read-through / trans-splicing

Based on: The emerging complexity of gene fusions in cancer ;Fredrik Mertens, Bertil Johansson, Thoas Fioretos Felix Mitelman; Nature Reviews Cancer 15,371–381 (2015); doi:10.1038/nrc3947

Motivation

Input of custom annotation in gene fusion detection software

→ Detection of novel fusions including IncRNA

Using prostate cancer (PCa) patient samples

→ TMPRESS-ERG fusion :

- In ~50% of PCa
- Correlates w/ bad prognosis
- Biomarker

Gene fusion detection software

- state-of-the-art programs usually include 3 steps:
 - 1. mapping and filtering for chimeric reads
 - 2. gene fusion junction detection
 - 3. fusion assembly and filtering

Input

Paired-end Sequencing

distance between each paired read is known

→ useful for alignment of e.g. repetitive regions

Detection of fusions

Chimeric transcript

Detection of fusions

Detection of fusions

Used tools

	FusionCatcher	SOAPfuse	ChimPipe
Published	2014, D. Nicorici et al., bioRxiv	2013, Jia W. et al., GenomeBiology	2017, B. Rodríguez- Martín, BMC
Source of samples	eukaryotic	human	eukaryotic
Read-Format	Paired-end Single-end	Paired-end	Paired-end
Aligner/Mapper	Bowtie/2 BLAT STAR	SOAP2 BWA	GEMtools
Filter	Based on databases	Based on sequence features	Based on categories of reads, sequence features and known genomes
Unique feature	 20+ categories of fusions Filtering w/ multiple databases 	 List w/ sequences of junction site Figures 	 Independent generation of split- reads and discordant PE-reads
Custom annotation input	no	yes	yes

S.Liu et al., Nucl Acids Res (2015)

Running the tools

Two sets of testdata:

MCF-7 Breast cancer cell line

6 fusion genes which have been validated in vitro

Edgren et al. (Genome Biology, 2011) + Kangaspeska et al. (PLOSone, 2012)

- Own testdata:
 - MCF-7 reads + reads created from custom annotation

Results MCF-7 dataset

	FusionCatcher	SOAPfuse	ChimPipe
BCAS4-BCAS3	\checkmark	\checkmark	\checkmark
ARFGEF2-SULF2	\checkmark	\checkmark	\checkmark
RPS6KB1-VMP1	\checkmark	\checkmark	\checkmark
GCN1L1-MSI1	X	×	X
AC099850.1-VMP1	\checkmark	X	\checkmark
SMARCA4-CARM1	\checkmark	\checkmark	\checkmark

Results MCF-7 dataset

Thanks to:

- Kristin Reiche
- Sven-Holger Puppel

Thank you for your attention!

Appendix

Source: Jia et al.: SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biology 2013 14:R12

Partial exhaustion algorithm

Source: Jia et al.: SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biology 2013 14:R12

with:

FusReg1: HUM

FusReg2: based on INS

U_i: base on upstream gene FusReg2

D_i: base on downstream gene FusReg2

Partial exhaustion algorithm

FusReg2:

upstream region:

$$[MP1 + RL1 - FLB, MP1 + INS + 3 * SD - RL2 + FLB - 1]$$

downstream region:

[MP2 + RL2 - INS - 3 * SD + RL1 - FLB , MP2 + FLB - 1]

Figure S2

FusionCatcher

Based on: D. Nicorici, M. Satalan, H. Edgren, S. Kangaspeska, A. Murumagi, O. Kallioniemi, S. Virtanen, O. Kilkku, FusionCatcher – a tool for finding somatic fusion genes in paired-end RNA-sequencing data, bioRxiv, Nov. 2014, DOI:10.1101/011650

ChimPipe

Source: ChimPipe: Accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data; Bernardo Rodriguez Martin et al.; doi: http://dx.doi.org/10.1101/070888

