DNA methylation clock and drift in aging

Anela Tosevska Postdoctoral fellow Matteo Pellegrini lab Molecular cell and developmental biology

DNA methylation

Typical mammalian DNA methylation landscape

By Mariuswalter (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Why study DNA methylation?

- Cell-type-, stage-specific
- Mutable, can be influenced by external factors
- Changes that occur over time
- Medium-term indicator, not as acute as transcription
- Regulates transcription and more....

Why study DNA methylation in aging?

Aging is characterized by global HYPOmethylation!

Caloric restriction (CR) and epigenetic drift

Hahn et al, Genome Biology 2017

Wagner et. al., 2015, Clin. Sci.

Bilirubin: the key to longevity?

Study design

Reduced Representation Bisulfite Sequencing

By Rmtowle (Own work) [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Calculating DNA methylation

%Methylation =
$$\frac{M}{M + U} \times 100$$

In the above example, the methylation level of the locus is 40%

The Horvath epigenetic aging clock

Based on Illumina 27K or 450K bead arrays; overlap with RRBS poor: 5628 and 66224 sites, respectively, out of more than 1 million sites in RRBS.

How to find CpG sites from RRBS data that can predict age?

Prediction models with elastic net regularisation

4 1.3 1.2 Binomial Deviance ÷ 1.0 0.9 0.8 -5 -2 -1 -3_4

log(Lambda)

28 28 28 28 28 28 26 26 25 22 21 19 18 13 9 6 2

Linear model for age prediction

Logistic model for age prediction

How to find CpG sites that act as age clocks in healthy individuals but drift with age in GS?

Epigenetic clock vs. epigenetic drift

UGT1A1*1 / Control

UGT1A1*28 / GS

Methylation

Differentially methylated sites with > 10% diff, p < 0.05

Hypomethylated sites with age

Hypomethylated sites with age

Hypermethylated sites with age

Hypermethylated sites with age

Overlap between clock CpG sites

Clock CpG sites hypermethylated with age

Clock CpG sites hypomethylated with age

Where are these sites located and what are their functions?

- Annotation in progress!!!
- No overlap with changes in RNA expression
- Only a very small fraction in gene promoter regions
- Many associate with gene bodies or IncRNAs
- High representation in transposable elements, especially Alu elements

Thanks!!!!

