

UNIVERSITÄT LEIPZIG

MULTIDIMENSIONAL SEGMENTATION OF SACCHAROMYCES CEREVISIAE DATA

Halima Saad'Allah SAKER

Supervisor:

Prof. Peter F. Stadler

Prof. Ahmad Shahin

H. SAKER

OUTLINE

Motivation
Introduction
Methodology
Result
Conclusion

MOTIVATION

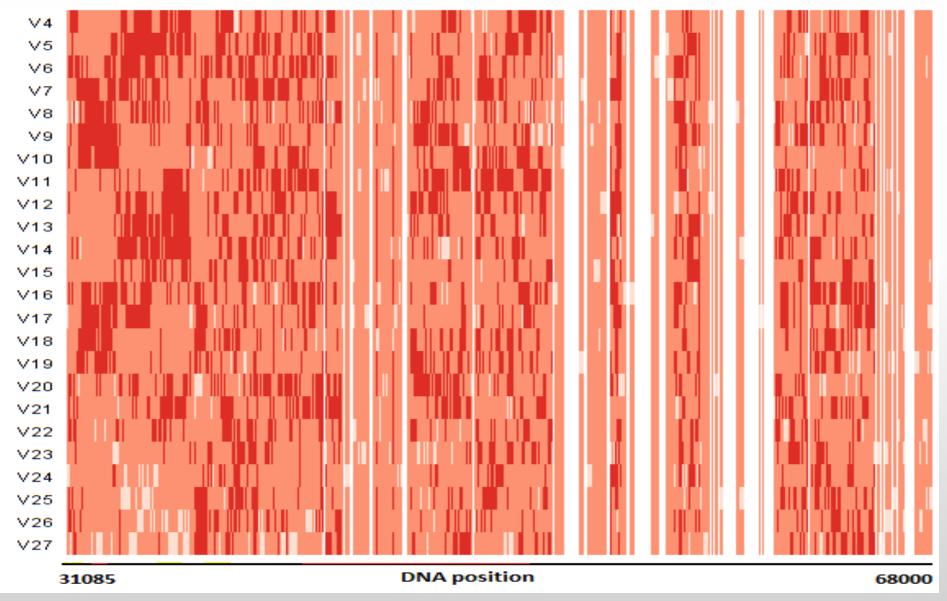
- The goal of segmentation in **Bioinformatics** is to decompose the genomic sequence, into a small number of homogeneous non-overlapping pieces, segments. "Each segment has a certain degree of internal similarity".
- The main goal is to <u>design</u>, <u>implement</u>, and <u>test</u> novel segmentation algorithms that work on one- and multi data dimension.
- Segmentation of genomes into limited number of element types using a large collection of heterogeneous annotated data tracks as input.
- Identification of functional units on the genomic DNA that behave coherently in multiple conditions and tissues.

INTRODUCTION

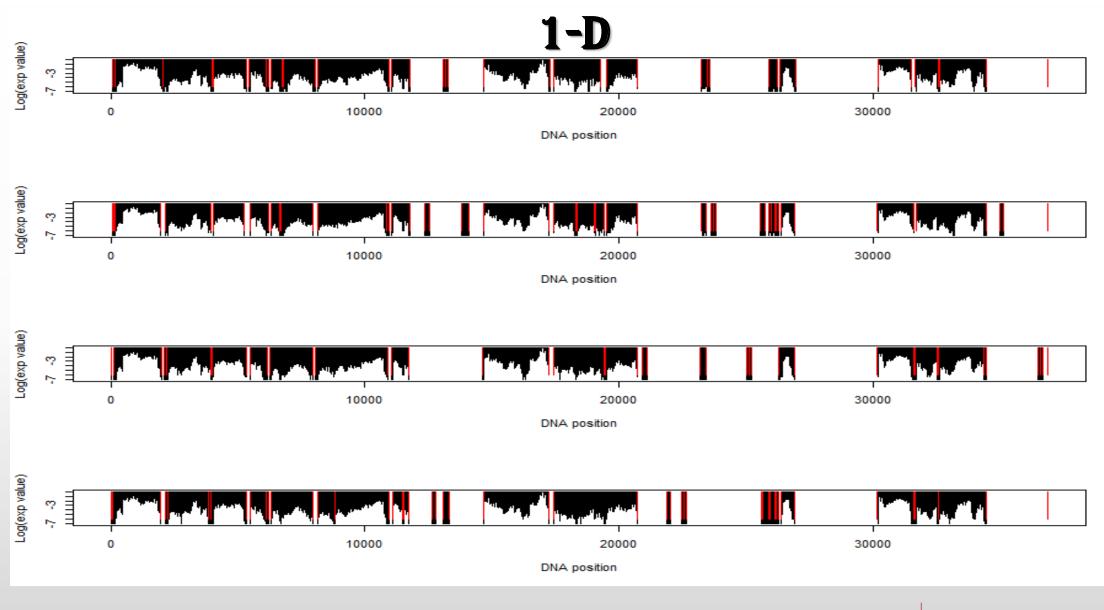
- Segmentation algorithms are widely used for extracting regions that behave homogeneously from sequences or time series.
- With the rapid availability of high throughout data sets, the segmentation problem appears more and more in the setting of multi-dimensional data.
- The segmentation problem, which addresses the task of subdividing an ordered sequence of data into homogeneous, approximately constant intervals
- We suggest a new segmentation method based on decomposition thresholding, and local optimum differentiation
- Detects significant breakpoints in the data to identify segment boundaries

METHODOLOGY

- Each data track is segmented independently.
- The interval are then have to be reconciled in a second, independent step (combining 1-D segmentation).
- We consider the distribution of occurrence of boundaries in each 1-D segmentation
- Combining 1-D segmentation of boundaries taking into consideration the maximum segment length in each data type.


CASE STUDY

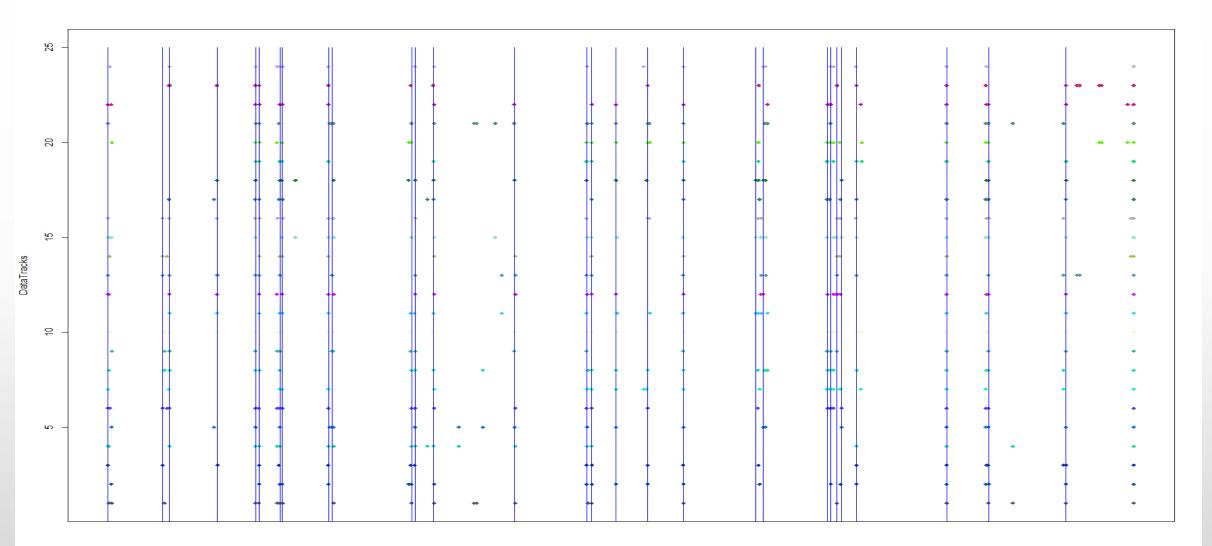
- Dataset of 24 time series transcriptomic data of Saccharomyces cerevisiae
- Data of transcribed domain from chromosome I (chrI:31100..68000)


RESULTS

- The distribution of jump sizes can be used to determine significant interval boundaries in a signal independently for each data dimension.
- Segment boundaries for each datatrack are identified using the simple one-dimensional segmentation algorithm.
- These segment boundaries can then be combined to a multidimensional segmentation.
- The accuracy of the segmentation increases with the number of data dimensions.

HEATMAP

8

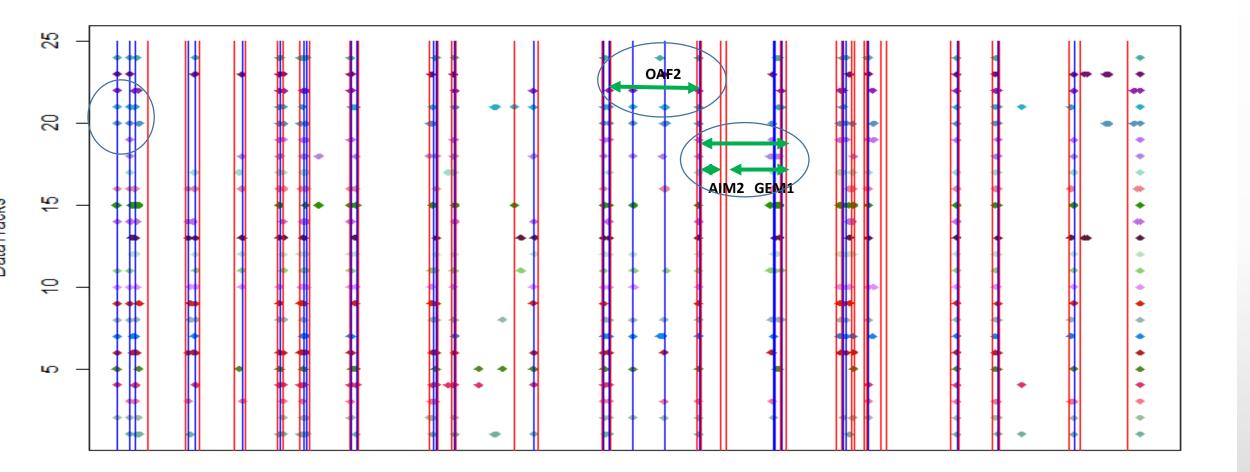

boundaries

ONE-DIMENSIONAL SEGMENTATION

	- 25																
		•	•		• •••	•	• •		•	•	•		• •	•	•		•
			•	•	••	•	• •			•		•	• •	•	•	•••	•
		**			•• •	•	•	•	• •		•	•	•	•	•	•	••
		•			•••	-	• •	• • •	•• •	•	•		•	•	• •	•	•
	8 -	•			•• ••		•		•• •	•	•	•	••• •	•	•	•	••
					• •	•	•		**		•	•	•• ••	•	•	•	•
				•	• • •	•	•• •	•	• •	•	•		•		•	•	•
			•	•	•• ••		**		•		•	•	•••	•	•	+	•
		•	**	•	••••	**	•		•	•		-	40 0	•	+	+	•
	- 15	•			• • •	••	• •	•	•• •		•	•	••• •	•	•	•	•
DataTracks		•	**		• •	•	•	•	•		•			•			•
ataTr		•	**	•	•• •	•	•	• •	**		•	**	• •	•	•	• •	•
õ		•	•	•	• ••	**	• •	•	* *		•	•	• •••	•	•	•	•
	_		•	•	• •	•	•• •	•	• •	•	•			•	•	•	•
	2 -	•	**	•	• ••	**	• •	•	•• •		•		•	•	•	•	•
		•	**		• •	•	**	*	•		•		***	•	•	*	•
		•	••		* *		•••	•	* *	•	•	••	••• •	•	•	•	•
		*	•		*	•	•		•• •	*	•	•		•	•	•	•
		•	**		•• ••	•	•• •	•	**	•		•	40 •	•	•		•
	- <u>م</u>	•		•	• •	-	• •	• •	• •		•	-00	•	*	-46-	*	•
		•	•		•• ••	••	•• •• •	•	**				•	•	*		•
		•	•	•	•••	•	**		**	•	•	•	•	•			•
		*			• •	•	• •		•• •	•	•	*	•• •	•	*	•	•
		*	•		** ***	•	• •	* *	*		•		•	*	* *	•	•

DNA position

COMBINING 1-D SEGMENTATION



DNA position

OBSERVATION!

- After comparing result with genome annotation, we have 3 interesting cases in our results:
 - New non annotated segment
 - one annotated gene segmented into more than segment
 - 2 or more genes have no boundaries and merged into one segment

SEGMENTATION VS. ANNOTATION

DNA position

annotations

CONCLUSION

- We have presented a conceptually simple scheme for segmenting multi-dimensional transcriptomic data.
- The target data in this work is multivariate genetic/epigenetic data. The reason is that those datasets can change under the effect of several conditions such as, chemical, genetic and epigenetic modification.
- Algorithm can accommodate data of different types and resolution
- The aggregation of the 1-D boundaries leads to the desired multidimensional segmentation.

TO BE DONE

- Dynamic programming of algorithm to be adapted to almost all data types
- Apply algorithm on dataset of new species!
- Find new annotation in Yeast genome
- Know the biological meaning of each case!

TO BE COLLECTED

- New time series Dataset (genomic, epigenomic, transcriptomic, proteomic data) for yeast Saccharomyces cerevisiae
- Time series Dataset for other species!

ACKNOWLEDGEMENTS

- Prof. Peter Stadler
- Prof. Ahmad Shahin
- And YOU

UNIVERSITÄT LEIPZIG

MERCI POUR VOTRE & TTENTION?

Your questions, remarks and suggestions are welcome!