Tissue-specific pathway comparison in mammalian organisms

Nadezhda T. Doncheva^{1,2} Lars Juhl Jensen², Jan Gorodkin¹

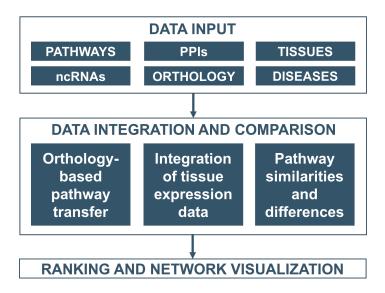
¹Center for non-coding RNA in Technology and Health & ²Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Denmark

AniGen project goal

Which animal models would be most useful to generate reliable hypotheses about human with respect to a given phenotype?

AniGen project goal

- Which animal models would be most useful to generate reliable hypotheses about human with respect to a given phenotype?
- Comprehensive comparison between mammalian organisms on different levels, e.g. tissue expression and pathways



AniGen project goal

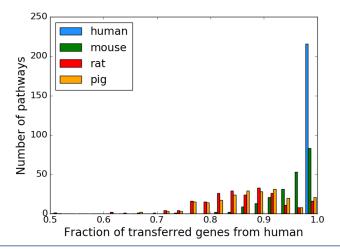
- Which animal models would be most useful to generate reliable hypotheses about human with respect to a given phenotype?
- Comprehensive comparison between mammalian organisms on different levels, e.g. tissue expression and pathways
- Experimental analysis and validation by our collaborators

Pathway analysis workflow

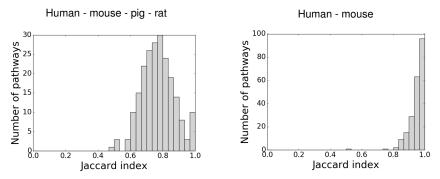
How much is the pathway overlap between human and model organisms?

- Only few experimentally determined interactions
- \Rightarrow Pathway resources use orthology transfer from human

- Only few experimentally determined interactions
- \Rightarrow Pathway resources use orthology transfer from human
- However, no unified and consistent definition of orthology and no good consensus

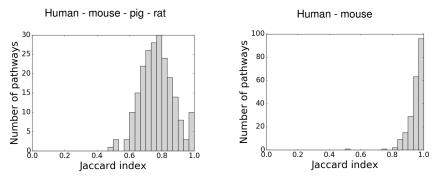


- Only few experimentally determined interactions
- \Rightarrow Pathway resources use orthology transfer from human
 - However, no unified and consistent definition of orthology and no good consensus
- \Rightarrow Perform our own consistent orthology-based pathway transfer



⇒ We use curated human pathways and do a consistent orthology transfer using eggNOG (Huerta-Cepas *et al.* 2016)

- ⇒ We use curated human pathways and do a consistent orthology transfer using eggNOG (Huerta-Cepas *et al.* 2016)
- $\blacktriangleright\,$ Example for the transfer of \sim 200 KEGG pathways


KEGG pathways comparison

Overlap is measured by the Jaccard index of the gene overlap

KEGG pathways comparison

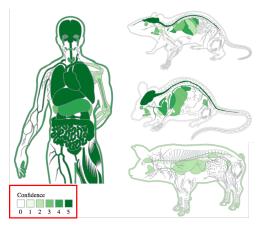
- Overlap is measured by the Jaccard index of the gene overlap
- Between human, mouse, rat and pig, all KEGG pathways overlap more than 50% and half of them - at least 75%
- Between human and mouse, the gene overlap is 100% for 1/3 of the pathways and above 80% for all pathways (except for 2)

Next step

- Orthology-based comparison highlights the similarities between human and other organisms
- But we are also interested in the differences

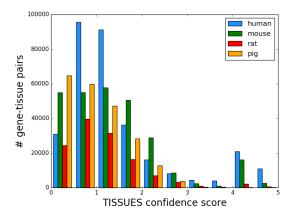
Next step

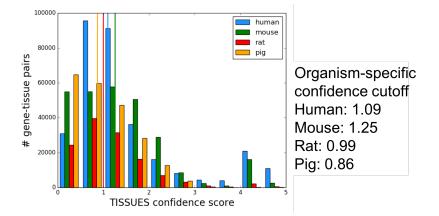
- Orthology-based comparison highlights the similarities between human and other organisms
- But we are also interested in the differences
- ⇒ Create tissue-specific pathways for each organism by integrating the expression data



Which tissue expression data do we use?

TISSUES web resource


- Tissue expression for human, mouse, rat and pig
- Integrates data from transcriptomics, text mining and manual curation
- Provides confidence scores based on a gold standard
- That are comparable across datasets and organisms
- Palasca et al., 2018.

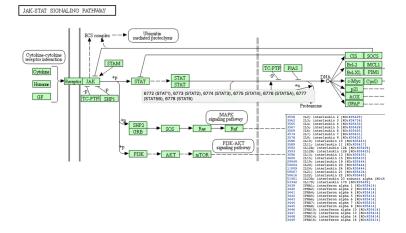

When is a gene expressed?

- We need a TISSUES confidence cutoff
- However, the same cutoff for all organisms is not suitable, since amount and quality of data varies a lot between organisms

When is a gene expressed?

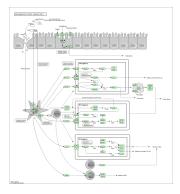
- We need a TISSUES confidence cutoff
- ⇒ Use organism-specific cutoffs based on the 50 percentile of confidence scores for each organism (or even tissue?)

How do we integrate the pathway and tissue expression data?

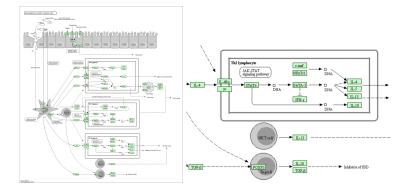


How do we integrate the pathway and tissue expression data?

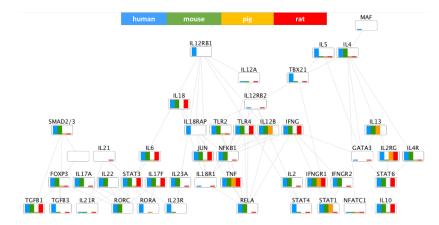
Exploratory analysis on a KEGG pathway



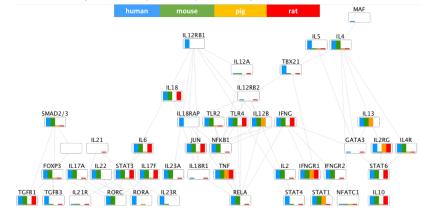
Case study: JAK-STAT signaling pathway


 KEGG pathway (hsa04630) is very general, each protein box combines several genes, the pathway entry contains more than 100 genes

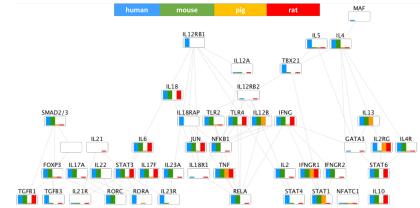
Example: KEGG IBD pathway



Example: KEGG IBD pathway



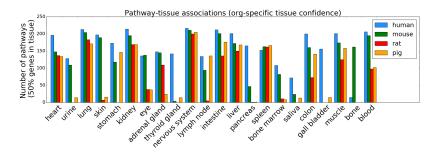
The IBD pathway (hsa05321) is much better annotated in KEGG



Annotated with TISSUES expression evidence for colon: full bar for confidence above 1.0 and a stripe for lower confidence.

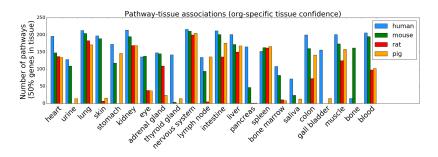
► ~ 60 % of the genes are expressed in mouse and human colon tissue, while only 26 % for rat and 15 % for pig.

- ► ~ 60 % of the genes are expressed in mouse and human colon tissue, while only 26 % for rat and 15 % for pig.
- ⇒ Use organism- or tissue-specific TISSUES confidence cutoffs instead of an universal one

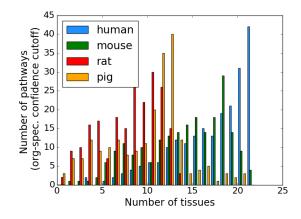

 Find groups of connected genes with similar "expression pattern" across organisms/tissues

How to integrate the pathway and tissue expression data?

Pathway-tissue associations


Pathway-tissue associations

- Number of pathways "expressed" in a given tissue
- Measure "pathway expression" by a proportion (e.g. 50%) of confidently expressed pathway genes
- Use fixed confidence cutoff (universal, org-specific, tissue-specific)


Pathway-tissue associations

- Number of pathways "expressed" in a given tissue
- Measure "pathway expression" by a proportion (e.g. 50%) of confidently expressed pathway genes
- Use fixed confidence cutoff (universal, org-specific, tissue-specific)
- \Rightarrow Are there tissue-conserved pathways among the organisms?

Distribution of pathway-tissue associations

- Are there tissue-specific pathways?
- How many pathways are "expressed" in how many tissues (X% of the pathway genes confidently expressed)?

Next steps

- Given our comprehensive pathway-tissue-organism framework, what interesting questions can we answer?
- Perform a disease-related comparison for a disease studied in several model organisms
- Provide pathway transfer and tissue annotation in Cytoscape

Acknowledgements

- Jan Gorodkin
- Lars Juhl Jensen

- Oana Palasca
- Helen Cook

- Reza Yarani
- Flemming Pociot
- Thomas Litman

THANK YOU!

