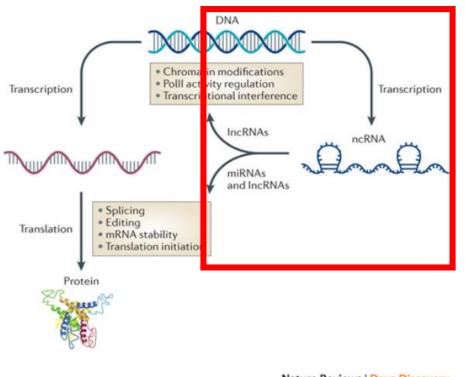


Intertwining of transposable elements and non-coding RNAs in plant genomes

Douglas Silva Domingues

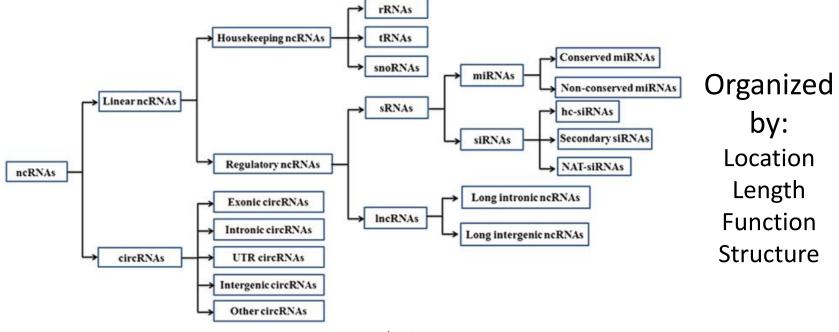
w/ Daniel Longhi Fernandes Pedro, Alexandre Rossi Paschoal


São Paulo State University, Institute of Biosciences at Rio Claro, Brazil Federal Technology University of Paraná, Graduation Program in Bioinformatics, Brazil

Topics

- ncRNAs Non-coding RNAs
- TEs Transposable Elements
- PlaNC-TE: a comprehensive knowledgebase of noncoding RNAs and transposable elements in plants
- Next steps
- Take home message

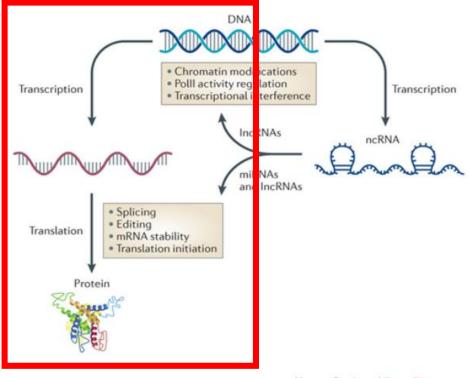
What are ncRNAs?



non-coding RNAs (ncRNAs)

Sequences that are not translated into protein

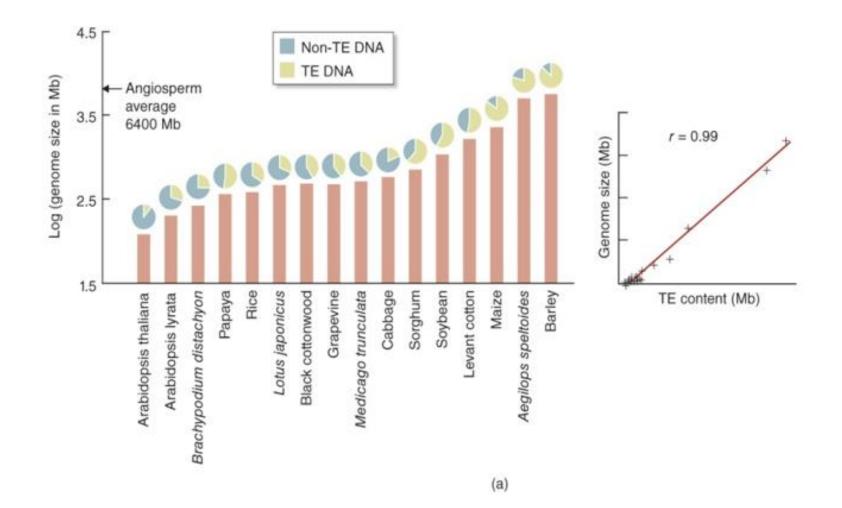
Nature Reviews | Drug Discovery Wahlestedt, 2013

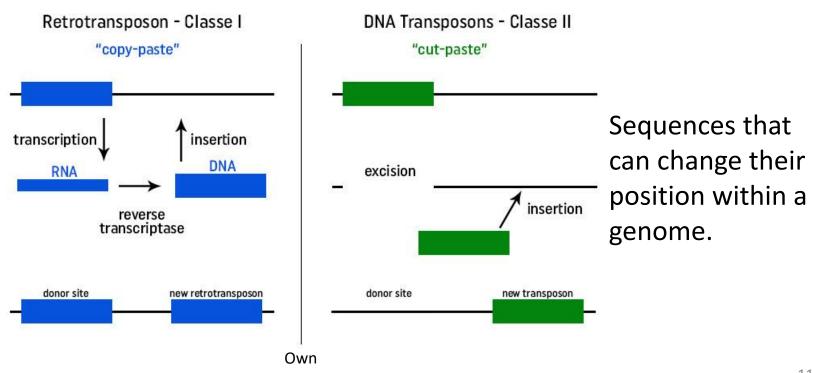

ncRNAs Classification

Liu et al. 2017

Central dogma of molecular biology.

DNA -> RNA -> Protein



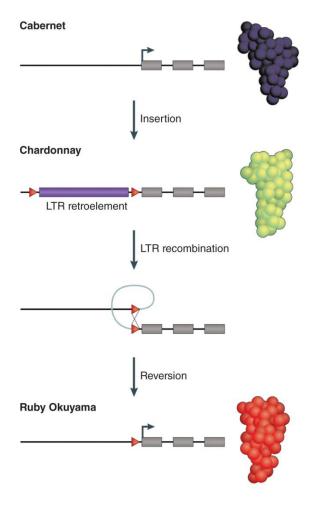

Nature Reviews | Drug Discovery Wahlestedt, 2013

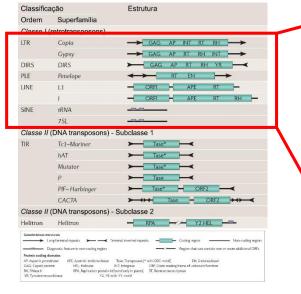
KEEP CALM. PLANTS HAVE **PROTEIN, TOO.**

What are TEs?

Major componentes in plant genomes and relevant to genome size!

Transposable Elements – Classes



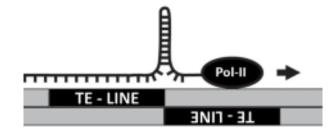

Figure 3.10 Control of fruit color in grapes by a retrotransposon. Cabernet grapes have a fully functional pigment gene (exons indicated by gray boxes). Insertion of a retrotransposon just upstream of the gene blocks pigment production and leads to green Chardonnay grapes. The LTRs of the element can recombine and remove most of the transposon, but one LTR is left, causing reduced transcription of the locus in Ruby Okoyama grapes. Lisch (2013). Reproduced with permission of Macmillan Publishing Ltd.

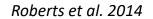
Plant Genes, Genomes and Genetics, First Edition. Erich Grotewold, Joseph Chappell and Elizabeth A. Kellogg. © 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd. Companion Website: www.wiley.com/go/grotewold/plantgenes.

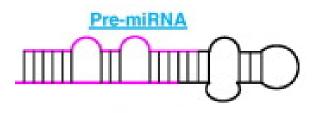
WILEY Blackwell

Transposable Elements – Hierarchy

Class | Order | Superfamily

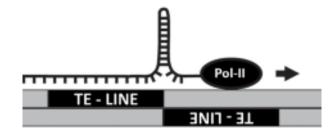


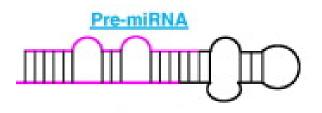

WICKER et al. 2007


Classifica	ação	Estrutura
Ordem	Superfamília	
Classe I ((retrotransposons)	
LTR	Copia	GAG AP INT RT RH
	Gypsy	GAG AP RT RH INT
DIRS	DIRS	GAG AP RT RH YR
PLE	Penelope	RT EN
LINE	L1	- ORFI - APE RT -
	1	- ORFI - APE RT RH -
SINE	tRNA	
	7SL	

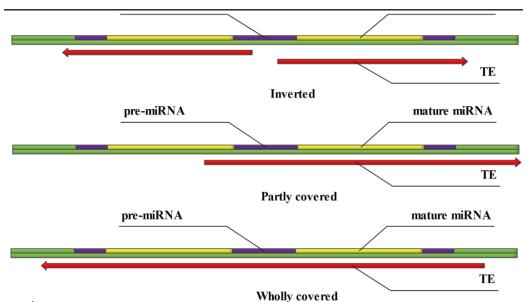
LTR: Long Terminal Repeat non-LTR: non-Long Terminal Repeat

Why ncRNA:TEs?





Adapted from: Maiti et al. 2012


Why ncRNA:TEs?

Roberts et al. 2014

Adapted from: Maiti et al. 2012

15

Qin et al., 2015

- ncRNA and TEs: known but ignored at in large-scale analyses

Genome Analysis

Mammalian microRNAs derived from genomic repeats

Neil R. Smalheiser and Vetle I. Torvik

University of Illinois at Chicago, UIC Psychiatric Institute, MC 912, 1601 W. Taylor Street, Chicago, IL 60612 USA

BIOINFORMATICS

Dual coding of siRNAs and miRNAs by plant transposable elements

Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersiconspecific IncRNAs in tomato

Xin Wang, Guo Ai, Chunli Zhang, Long Cui, Jiafa Wang, Hanxia Li, Junhong Zhang and Zhibiao Ye Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan Hubei 430070, China

JITTIMA PIRIYAPONGSA and I. KING JORDAN School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA

Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences

Justin T Roberts, Sara E Cardin, and Glen M Borchert*

HYPOTHESIS

The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs

The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human

Sheng Qin, Ping Jin, Xue Zhou, Liming Chen, Fei Ma 🖂

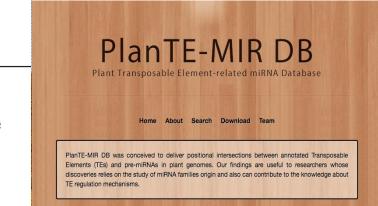
Published: June 26, 2015 • https://doi.org/10.1371/journal.pone.0131365

Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs

Aurélie Kapusta, Zev Kronenberg 🔯, Vincent J. Lynch 🔯, Xiaoyu Zhuo, LeeAnn Ramsay, Guillaume Bourque, Mark Yandell, Cédric Feschotte 🖬

Published: April 25, 2013 • https://doi.org/10.1371/journal.pgen.1003470

Initial efforts


- First database to organize such information in plants
- PlanTE-MIR DB {10 ssp} v.1 2016
 - miRNA:TE {152 evidences in 10 genomes}

Funct Integr Genomics (2016) 16:235–242 DOI 10.1007/s10142-016-0480-5

ORIGINAL ARTICLE

PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes

Alan P. R. Lorenzetti¹ · Gabriel Y. A. de Antonio² · Alexandre R. Paschoal² · Douglas S. Domingues³

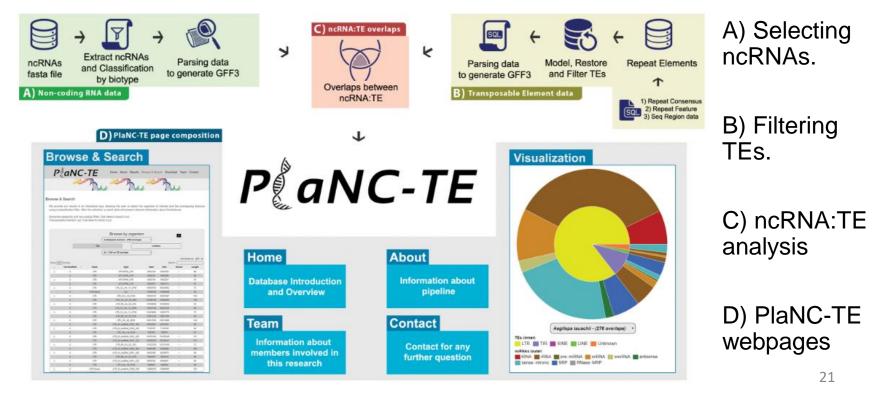
What if we expand this to all public plant genomes with TE and ncRNA annotation data?

http://planc-te.cp.utfpr.edu.br

PlaNC-TE: a comprehensive knowledgebase of noncoding RNAs and transposable elements in plants a

Daniel Longhi Fernandes Pedro, Alan Péricles Rodrigues Lorenzetti,

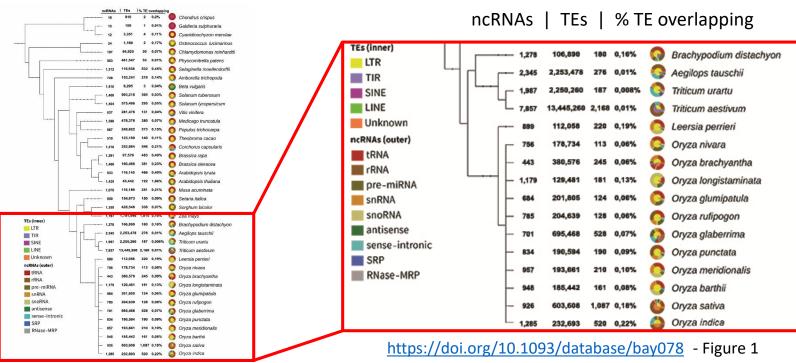
Douglas Silva Domingues, Alexandre Rossi Paschoal 🐱


Database, Volume 2018, 1 January 2018, bay078, https://doi.org/10.1093/database/bay078 PlaNC-TE: http://planc-te.cp.utfpr.edu.br **Published:** 13 September 2018 Article history •

Objectives

- Extend PlanTE-MIR to all plant genomes available in Ensembl (53 species)
- Extend to all ncRNA classes available
- Make available a well-organized data
 - Lack of an organized repository of ncRNA:TEs for complete genomes in plants
 - Standardize outputs
- Stimulate studies in TEs and ncRNAs in plant genomes

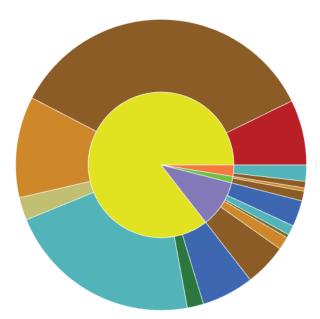
PlaNC-TE - Workflow

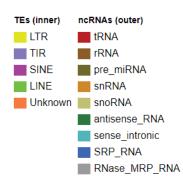

PlaNC-TE: A comprehensive knowledgebase of non-coding RNAs and transposable elements in plants.

- Genomic sequence source
 - Ensembl Plants
 - 53 genomes

- Retrieved sequences in ncRNAs and TEs
 - ncRNAs 58,390 records (53 genomes)
 - TEs 31,217,630 records (45 genomes)

PlaNC-TE – Phylogenetic tree

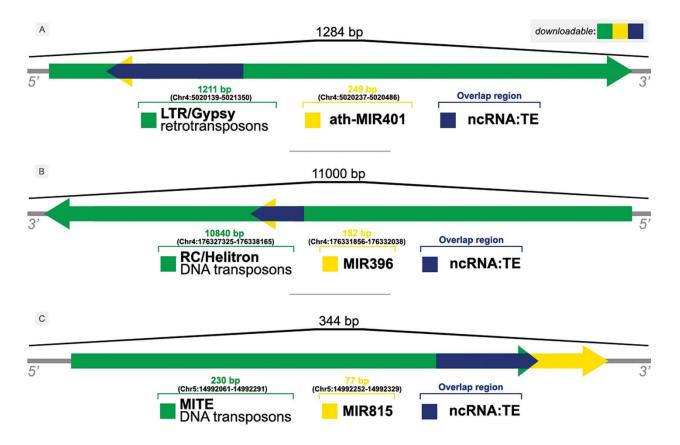

	LTR	TIR	LINE	SINE	Unknown	Total
tRNA	2959	192	1	14	303	3469
rRNA	2962	1389	25	7	1082	5465
snRNA	1763	117	14	2	120	2016
Sense-intronic	764	20	-	-	207	991
Pre-miRNA	696	190	3	3	94	986
snoRNA	529	287	2	2	49	869
SRP	391	70	-	-	2	463
Antisense	70	2	1	-	16	89
RNase MRP	2	-	-	-	-	2
Total	10 136	2 267	46	28	1873	14 350


Overall features

- Overlap features:
 - ~41% of the overlaps are among 4 genomes:
 - Triticum aestivum; Zea mays; Oryza sativa; Arabidopsis thaliana
- Overlap records between ncRNA:TE | Public data available
 - Visualization tools (Charts by genome and jBrowse)
 - 14.350 overlaps in 40 genomes
- Scripts developed in Perl + Bash
 - Automatic updates
 - ZendFramework2, Php7, MySQL, CSS3, HTML5, JavaScript and Debian9.

PlaNC-TE – Detailed info

ncRNAs:TEs overlap



Aegilops tauschii - (276 overlaps)

For more information see *download* section. To export this chart, *click here*.

- First page
- Select genome
- View ncRNA:TE overlaps

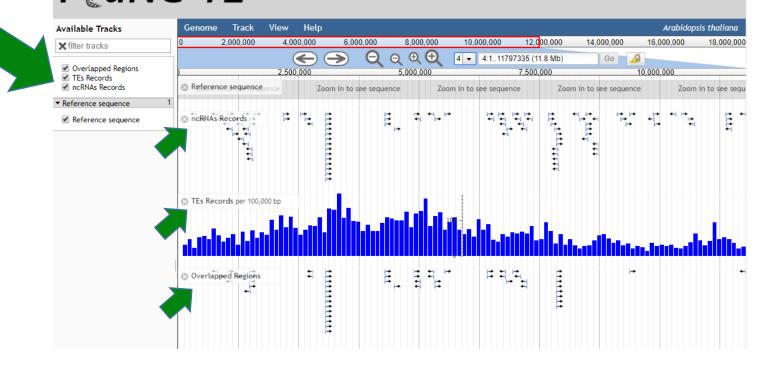
PlaNC-TE – Examples of nc:TEs

From: PlaNC-TE: a comprehensive knowledgebase of non-coding RNAs and transposable elements in plants Database (Oxford). 2018;2018. doi:10.1093/database/bay078 Database (Oxford) | The Author(s) 2018. Published by Oxford University Press.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

PlaNC-TE – Download

PlaNC-TE data using Ensembl Plants v.38

previous releases


Species	ncRNAs overlapping TEs	TEs overlapping ncRNAs	Overlapped Regions	JBrowse
Aegilops tauschii (276 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Amborella trichopoda (219 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Arabidopsis lyrata (466 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Arabidopsis thaliana (</u> 722 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Beta vulgaris (</u> 3 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Brachypodium distachyon (</u> 180 overlaps)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Brassica oleracea (381 overlaps)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Brassica rapa (</u> 483 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Chlamydomonas reinhardtii (50 overlaps)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Chondrus crispus (</u> 2 overlaps)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Corchorus capsularis (546 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Cyanidioschyzon merolae (4 overlaps)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Galdieria sulphuraria (</u> 1 overlap)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Leersia perrieri (</u> 220 overlaps)	<u>.gff3 .fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
Medicago truncatula (380 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here
<u>Musa acuminata (</u> 251 overlaps)	<u>.gff3</u> <u>.fa</u>	<u>.gff3</u> <u>.fa</u>	<u>.gff3 .fa .tsv (with nts)</u>	Click here

PlaNC-TE – Search & Browse

			Browse by organism Aegilops tauschii - (276 overlaps)	•		I	X	
		TEs		ncF	NAs			
			All - (276 nc-TE overlap)	•				
Show (10) •) entries					Search: (downloa	d as: .gff3 .fa
↓	Chr/Scaffold 🔺	Class	¢ Туре		Start 🕴	End 🔶	Strand 🔶	Length 🝦
	C135648261	LTR/Copia	trep3125		1	209	+	208
	C140946502	LTR	LTR_Sb_chr_02_53		326	448	-	122
	C141036012	LTR	LTR_AI_scaffold_0002_362		408	500	-	92
	C141054532	LTR/Copia	trep3125		1	151	+	150
	C141088066	LTR/Copia	trep3125		760	972	+	212
	C141262992	LTR	LTR_AI_scaffold_0002_336		960	1071	-	111
	C141424736	LTR	LTR_Gm_08_2830		519	697	-	178
	C141461244	LTR	LTR_Gm_08_2830		1036	1214	-	178
	C141470882	DNA/En-Spm	trep28		1499	1517	+	18
	C141470882	LTR	LTR_AC198290.2_10424		1474	1748	-	274
howing	1 to 10 of 276 entri	ies		Previous	1 2	3 4		28 Next d as:.gff3.fa

PlaNC-TE – *jBrowser* Panc-TE

Home About Reports Search Download & JBrowse Team Contact

http://planc-te.cp.utfpr.edu.br

PlaNC-TE: a comprehensive knowledgebase of noncoding RNAs and transposable elements in plants a

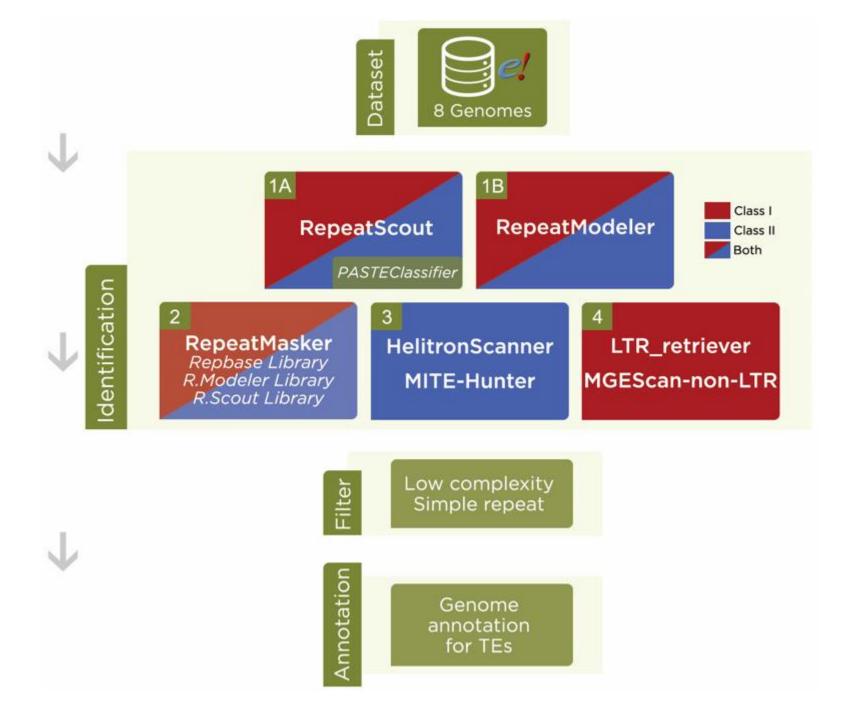
Daniel Longhi Fernandes Pedro, Alan Péricles Rodrigues Lorenzetti,

Douglas Silva Domingues, Alexandre Rossi Paschoal 🐱

Database, Volume 2018, 1 January 2018, bay078, https://doi.org/10.1093/database/bay078 PlaNC-TE: http://planc-te.cp.utfpr.edu.br **Published:** 13 September 2018 Article history •

So...

- Extend PlanTE-MIR to all plant genomes available in Ensembl (53 species)


So...

- Extend PlanTE-MIR to all plant genomes available in Ensembl (53 species)
 - But TEs data are available only for 40 genomes!

So...

- Extend PlanTE-MIR to all plant genomes available in Ensembl (53 species)
 - But TEs data are available only for 40 genomes!
 - If TEs are a major component of genomes, something is wrong!

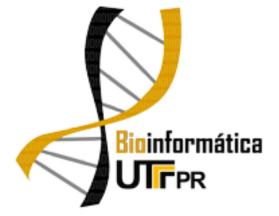
Phase 2: Re-annotation of TEs in complete plant genomes

Initial analyses raised the number of TE entries in genomes

Plant genomes	Ensembl Plants	Our approach		
A. lyrata	116,145	391,425		
A. thaliana	43,442	63,879		
B. vulgaris	6,295	984,280		
B. rapa	97,576	434,231		
C. sativus	-	176,333		
M. acuminata	116,189	637,112		
P. trichocarpa	248,622	864,831		
V. vinifera	281,476	834,298		

Take home message

- We still need standardization and better annotation (at least of TEs) in plant genomes
- Up to now, TE annotation is heavily based in alignment: curated datasets can be an starting point for other computational approaches
- Long-term goal: Are any specific characteristic (*feature*) of TE and/or ncRNA that distinguish ncRNA:TE association?


Team/Acknowledgements

Daniel L. F. Pedro

Dr. Alexandre Rossi Paschoal

Alan P. Rodrigues Lorenzetti

Funding

Tharcísio Amorim

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Thank you!

e-mail: douglas.domingues@unesp.br