sRNA triggered translational OFF switch

Sven Findeiß

Bioinformatics Group and Interdisciplinary Center for Bioinformatics,
Department of Computer Science,
University Leipzig

34th TBI Winterseminar

February, 2019
Design Idea

sRNA \((y) \)
- leading A for efficient transcription
- apply terminator design principles\(^1\)

Interaction
- optimize for stable interaction
 without disrupting other constraints

5’ UTR \((x) \)
- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 \\
+ (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\]

Design Idea

sRNA \((y) \)
- leading A for efficient transcription
- apply terminator design principles\(^{[1]}\)

Interaction
- optimize for stable interaction without disrupting other constraints

5’ UTR \((x) \)
- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 + (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\]

Design Idea

sRNA (y)
- leading A for efficient transcription
- apply terminator design principles\[^1\]

Interaction
- optimize for stable interaction
 without disrupting other constraints

5’ UTR (x)
- result from another design attempt
- high reporter gene expression

$$f(xy) = 0.01 \times \left(G(y|\Phi_{\text{terminator}}) - G(y|\Phi) \right)^2 + \left(G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi) \right)$$

Design Idea

sRNA \((y)\)
- leading A for efficient transcription
- apply terminator design principles\[^1\]

Interaction
- optimize for stable interaction without disrupting other constraints

5’ UTR \((x)\)
- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times \left(G(y|\Phi_{\text{terminator}}) - G(y|\Phi) \right)^2 + \left(G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi) \right)
\]

Design Idea

sRNA \((y)\)
- leading A for efficient transcription
- apply terminator design principles\(^1\)

Interaction
- optimize for stable interaction without disrupting other constraints

5’ UTR \((x)\)
- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times \left(G(y|\Phi_{\text{terminator}}) - G(y|\Phi) \right)^2 \\
+ \left(G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi) \right)
\]

sRNA (y)

- leading A for efficient transcription
- apply terminator design principles\(^1\)

Interaction

- optimize for stable interaction without disrupting other constraints

5’ UTR (x)

- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 \\
+ (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\]

Design Idea

sRNA (y)
- leading A for efficient transcription
- apply terminator design principles\(^1\)

Interaction
- optimize for stable interaction
- without disrupting other constraints

5' UTR (x)
- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 \\
+ (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\]

Experimental Results I

\[
\text{Effect} = \frac{\langle \text{OFF} \rangle}{\langle \text{ON} \rangle} = p_u \cdot \langle H \rangle + p_b \cdot \langle L \rangle
\]

If \(\langle H \rangle = 800, \langle L \rangle = 50 \) and Effect = 67% \(\Rightarrow \) 35% of all targets are bound.

\[
f(xy) = 0.01 \times \left(G(y|\Phi_{\text{terminator}}) - G(y|\Phi) \right)^2
+ \left(G(xy|\phi_{unbound}) + G(xy|\phi_{bound}) - 2 \cdot G(xy|\Phi) \right)
\]
Experimental Results I

\[
\text{Effect} = \frac{\langle OFF \rangle}{\langle ON \rangle} = p_u \cdot \langle H \rangle + p_b \cdot \langle L \rangle
\]

If \(\langle H \rangle = 800, \langle L \rangle = 50 \text{ and Effect} = 67\% \Rightarrow 35\% \text{ of all targets are bound} \]

\[
f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 + (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\]
Experimental Results I

\[\text{Effect} = \frac{\langle \text{OFF} \rangle}{\langle \text{ON} \rangle} = p_u \cdot \langle H \rangle + p_b \cdot \langle L \rangle \]

If \(\langle H \rangle = 800, \langle L \rangle = 50 \) and
\[\text{Effect} = 67\% \]
\[\Rightarrow \text{35\% of all targets are bound} \]

\[f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 + (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi)) \]
Experimental Results I

Effect [%] = \frac{\langle OFF \rangle}{\langle ON \rangle} = p_u \cdot \langle H \rangle + p_b \cdot \langle L \rangle \over \langle H \rangle

If \langle H \rangle = 800, \langle L \rangle = 50 and Effect = 67% ⇒ 35% of all targets are bound

f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2
+ (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
Design Idea

sRNA \((y)\)
- leading A for efficient transcription
- apply terminator design principles\(^{[1]}\)

Interaction
- optimize for stable interaction without disrupting other constraints

5’ UTR \((x)\)
- result from another design attempt
- high reporter gene expression

\[
\begin{align*}
 f(xy) &= 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 \\
 &\quad + (G(xy|\Phi_{\text{unbound}}) + G(xy|\Phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\end{align*}
\]

Design Idea

sRNA \((y) \)
- leading A for efficient transcription
- apply terminator design principles\(^{[1]}\)

Interaction
- optimize for stable interaction
- without disrupting other constraints

5' UTR \((x) \)
- result from another design attempt
- high reporter gene expression

\[
f(xy) = 0.01 \times (G(y|\Phi_{\text{terminator}}) - G(y|\Phi))^2 \\
+ (G(xy|\phi_{\text{unbound}}) + G(xy|\phi_{\text{bound}}) - 2 \cdot G(xy|\Phi))
\]

Design Idea

\[f(xy) = (1 - P(y | \Phi_{unpaired})) + \left(1 - \frac{[xy_{bound}]}{[x]_0}\right) \]

sRNA \((y)\)
- leading A for efficient transcription
- apply terminator design principles\(^\text{[1]}\)

Interaction
- optimize for stable interaction
 without disrupting other constraints

5' UTR \((x)\)
- result from another design attempt
- high reporter gene expression

If $\langle H \rangle = 800$, $\langle L \rangle = 50$ and Effect = 23%
\Rightarrow 82\%$ of all targets are bound

Extend the binding region \rightarrow confusing results

\[f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{xy_{bound}}{[x]_0}\right) \]

\[f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]_0}\right) \]
If $\langle H \rangle = 800, \langle L \rangle = 50$ and Effect $= 23\%$

$\Rightarrow 82\%$ of all targets are bound

Extend the binding region
\Rightarrow confusing results

$$f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[xy_{\text{bound}}]}{[x]}_0\right)$$

$$f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]}_0\right)$$
If $\langle H \rangle = 800$, $\langle L \rangle = 50$ and Effect = 23%
\Rightarrow 82% of all targets are bound

Extend the binding region → confusing results

$$f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[xy_{bound}]}{[x]_0} \right)$$

$$f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]_0} \right)$$
If $\langle H \rangle = 800$, $\langle L \rangle = 50$ and Effect = 23%
\Rightarrow 82% of all targets are bound

Extend the binding region
\rightarrow confusing results

$$f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[xy_{bound}]}{[x]_0}\right)$$
$$f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]_0}\right)$$
If $\langle H \rangle = 800$, $\langle L \rangle = 50$ and Effect = 23% \Rightarrow 82\%$ of all targets are bound

Extend the binding region \rightarrow confusing results

\[
f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[xy_{bound}]}{[x]_0}\right)
\]
\[
f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]_0}\right)
\]
If $\langle H \rangle = 800$, $\langle L \rangle = 50$ and Effect $= 23\%$

\Rightarrow 82% of all targets are bound

Extend the binding region \rightarrow confusing results

$$f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[xy_{bound}]}{[x]_0}\right)$$

$$f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]_0}\right)$$
If $\langle H \rangle = 800$, $\langle L \rangle = 50$ and Effect = 23% \[\Rightarrow 82\% \text{ of all targets are bound} \]

Extend the binding region \[\rightarrow \text{confusing results} \]

\[
f(D50.1.6) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[xy_{bound}]}{[x]_0}\right)
\]
\[
f(D50.1.K) = (1 - P(y|\Phi_{unpaired})) + \left(1 - \frac{[x]}{[x]_0}\right)
\]
Open Questions

1. Does the synthetic terminator really work?
2. How to verify D50.1.6 regulation?
 - How to verify the interaction?
 - Is it possible to measure duplex concentration?
3. What is wrong with the assumption: “The longer the interaction the more stable it is?”
Open Questions

1. Does the synthetic terminator really work?

2. How to verify D50.1.6 regulation?
 - How to verify the interaction?
 - Is it possible to measure duplex concentration?

3. What is wrong with the assumption:
 “The longer the interaction the more stable it is?”
Termination

PAA-Gel
Blot, Sonde D50.1+SynT (486/1002)

EVC D50.1 D50.1-K

200 nt
100 nt

Full-length (+T7-Terminator)

SynT-terminiert (ohne T7-Terminator)

PAA-Gel
Blot, Sonde D50.1-K + SynT (998/1002)

D50.1-K D50.1 EVC

Full-length (+T7-Terminator)

SynT-terminiert (ohne T7-Terminator)
Open Questions

1. Does the synthetic terminator really work?
2. How to verify D50.1.6 regulation?
 - How to verify the interaction?
 - Is it possible to measure duplex concentration?
3. What is wrong with the assumption: “The longer the interaction the more stable it is?”
Open Questions

1. Does the synthetic terminator really work?

2. How to verify D50.1.6 regulation?
 - How to verify the interaction?
 - Is it possible to measure duplex concentration?

3. What is wrong with the assumption:
 “The longer the interaction the more stable it is?”
Open Questions

1. Does the synthetic terminator really work?
2. How to verify D50.1.6 regulation?
 - How to verify the interaction?
 - Is it possible to measure duplex concentration?
3. What is wrong with the assumption: “The longer the interaction the more stable it is?”
Thanks to...

lab members:
- Stefan Hammer
- Felix Kühnl
- Peter F. Stadler
- Manuela Geiß
- Petra Pregel
- Jens Steuck

collaborators:
- Anna Ender, Leipzig
- Chris Günzel, Leipzig
- Mario Mörl, Leipzig
- Christina Weinberg, Leipzig
- Ilka Axmann, Düsseldorf
- Alice Pavlovski, Düsseldorf
- Sebastian Will, Vienna
- Christoph Flamm, Vienna
- Ivo L. Hofacker, Vienna
- Yann Ponty, Palaiseau
- Michael Ryckelynck, Strasbourg
Terminator Efficiency Estimation

SynT efficiency = 88%

\[\rho_t = \frac{M_{S1} - M_{S3}}{M_{S1} - M_{S3}} \]