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About me

Computer Science master student from the University of Southern Denmark

At the start of thesis

Looking for interesting ideas and difficult problems!
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Project Overview

Exploratory work for hopefully novel results and applications

Novo Nordisk Foundation thinks it’s exciting too! cheminf.imada.sdu.dk/novo-synergy

A lot of work

From Category Theory to

Presented here is the overarching plan Enzyme Design°

My role: Unleashing the Potential

> Hopefully help with pre-work of Com putational Systems
> Method development Chemistry

> Being kind of naive on purpose

This webpage provides an introduction to the project “From
Category Theory to Enzyme Design: Unleashing the Potential of
Computational Systems Chemistry”. The project is funded by the
Novo Nordisk Foundation (2020-2022) as a grant under the
Exploratory Interdisciplinary Synergy Programme. The project

combines the expertise from the Algorithmic Cheminformatics
Group at IMADA (Daniel Merkle, Rolf Fagerberg, Jakob L. Andersen),



https://cheminf.imada.sdu.dk/novo-synergy/

Applications Concrete Steps

Novel enzyme design 1. Rule mining
o 1. M-CSA
Synthetlc blology 2. Inferrules
One-pot designs 2. Rule modelling
|V|¢D + Kappa 1. Generalize to “base knowledge” rule set

2. Idea: Re-check reaction mechanisms

Supporting tools for existing discovery
techniques

Stochastic simulation
Catalytic mechanisms

Causality and pathways
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Modelling of Molecules

Def: a molecule is a labelled, connected, simple, undirected graph.

OH

O 0-

(a) Chemical depiction. (b) Visualisation of underlying model.

Vertex label = chemical element and charge
{H,He,Li,Be,B,C,N,O,...,Uuo} x Z
Edge label = bond type
{SINGLE, DOUBLE, TRIPLE, AROMATIC}




Graph Transformation Rules
Vertices and edges are either deleted, preserved, or added.
As a Double Pushout (DPO) rule p = (L <~ K 5 R):

C C
C/ \O

: |
C\\O H

R

Semantics

» [\K is deleted.
» K is preserved.
» R\K is added.

» Both / and r are monomorphisms.

E.g., see [Ehrig et al., Fundamentals of Algebraic Graph Transformation, 2006]
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50 Shades of Rule Composition

From Chemical Reactions to Higher Levels of Abstraction
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Abstract. Graph rewriting has been applied quite successfully to model
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B-Lactamase




THE MECHANISM OF ﬁ—LHCTHMHSE

LyS,0A

Glu166 deprotonates water,
which deprotonates Ser70,

B initiating nucleophilic addition
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Rule Composition - B-Lactamase

1GO0T10ro0r30Ur207T501H

N
2 H Ph
Y H—O/ (@] 0
C \\c/¢ \
o]
AN /ﬂ
NH , /p——H \
>*——C CO,H
CO ,H
CO,H //iin
NH , (|: NH ,
C co,

N

CO,H




Stochastic Simulation

Rules implicitly define transitions for stochastic simulations

Network-free Gillespie-like simulations
> Reaction rates are needed

Can potentially be used to verify one-pot systems

Stoch-sims are in development for M@D



Formaldehyde:  Glycolaldehyde:
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Aldol addition: Retro aldol addition:
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C\C C C\C/C C\C/C C\C C

Keto-enol tautomerism:

Reaction
Network

Example: Formose

Starting graphs:
> Formaldehyde

> Glycolaldehyde

Transformation rules:

° po: keto-enol-tautomerism, one
direction

° p,: keto-enol-tautomerism, the other
direction

° p,: aldol addition, one direction
> ps: aldol addition, the other direction
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Generation 1
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Generation 2




Generation 3




Generation 4






Catalytic Mechanisms

From networks we find catalytic reactions
> What is a rigorous definition of catalysis? Is it useful?

Essential for enzyme-like action

From base rule set, compute super-set of likely amino-acid catalyzed reactions
> Can hopefully suggest amino acids in active site based on educt and product

> Will represent the non-3D embedded active site in beginning



Summary

What is already there:
> Modelling formalisms for chemical reactions
> Tools for computing reaction networks
° Drive to push the methods forward

Next steps:

> Building of “base” rule set
> Explore the nuances of enzyme mechanisms

Come talk to me about what is hard in enzymatic design!



Thanks!




