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Crowding and encapsulation

● Chemical environment of an 
actual cell differs from that of 
a diluted buffer

Images taken from A. P. Minton, J. Cell Sci. 2006 119, 2863-2869

● Impacts both thermodynamic equilibria and kinetic reaction rates
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Macromolecular confinement

● Impact on:
– Molecular mobility

– Folding rates

– Aggregation behaviour

– Biomolecular equilibria

– Reaction rates

– ...
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activating 
interactions

diffusion 
limitation

Diagram taken from R. John Ellis, 
Trends Biochem. Sci. 2001, 
26, 2863-2869



  

Reverse micelles as cell mimics

hydrophilic interior

hydrophobic exterior

surfactants

bis(2-ethylhexyl)-sulfosuccinate 
(aerosol-OT, AOT)

65 1-decanoyl-rac-glycerol (DMAG) / 35 
lauryldimethylamine-N-oxide (LDAO)

Example surfactant molecules:
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Spectroscopy: 
A molecule-level microscope

 The umbrella term spectroscopy encompasses 
various kinds of measurements of the interaction 
between matter and electromagnetic waves.

 Depending on the latter’s frequency, different 
constituents of physical matter will resonate with 
the incoming radiation.
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Molecular Dynamics (MD) 
Simulations
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Atom positions r(n,x,y,z,t)
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Why MD simulations?

… and not Quantum Mechanics (QM)?

polarizable 
MD

QM

ab-initio MD, 
QM/MM

MD

“The only way to calculate 
spectroscopic observables 

correctly is to use QM”
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Why Molecular Dynamics 
Simulations?

● QM is size-limited, hence limited to some classes of matter.

Soft matter systems:

– Condensed like solids

– Dynamics like fluids

– Complicated dynamics with manifold processes
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Manageable with QM: 
~768 atoms

Our system size: 
~119,655 atoms



  

Why Molecular Dynamics 
Simulations?

● QM not always better at reproducing observables than 
MD!

QM bound to fail if the statistic stability of an observable

– Requires many time frames 

– Requires many particles

– Requires large spatial extension (boundary conditions)

● QM is size-limited, hence not always applicable

Soft matter systems:

– Condensed like solids

– Dynamics like fluids

– Complicated dynamics with manifold processes
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Why MD simulations?

polarizable 
MD

QM

ab-initio MD, 
QM/MM

MD

“The only way to calculate 
spectroscopic observables 

correctly is to use QM”

→ Use the right tool for the right job!
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w0 = 3 w0 = 7.5 w0 = 18

w0 = 30 w0 = 40

w0 = [H2O]/[surfactant]

= N(H2O)/N(surfactant)

MD simulations of reverse micelles
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w0 = 3 w0 = 7.5 w0 = 18

MD simulations of reverse micelles
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Computational spectroscopy – 

Link between experiment and simulation!

MD simulations of reverse micelles

9



  

Why computational spectroscopy?
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Computational spectroscopy

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

some process A(t)

some observable 
spectral feature Ã(ω)

12

Forward Fourier 
Transformation



  

Computational spectroscopy

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

12

Forward Fourier 
Transformation

Mutual diffusion

Fast Field Cycling 
NMR dispersion R(ω)



  

Computational spectroscopy

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

12

Forward Fourier 
Transformation

Molecular rotation

Fast Field Cycling 
NMR dispersion R(ω)



  

Computational spectroscopy

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

12

Forward Fourier 
Transformation

Molecular vibration

Fast Field Cycling 
NMR dispersion R(ω)



  

Computational spectroscopy

 

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

12

Forward Fourier 
Transformation

Normal modes

Infrared spectroscopy 
T(ύ)



  

Computational spectroscopy

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

12

Forward Fourier 
Transformation

Librations

Terahertz 
spectroscopy T(ύ)



  

Computational spectroscopy

M. Schmollngruber

  In theory, any spectral function can be calculated as the 
Fourier transform of the correlation function of the 
corresponding molecular property. 

  A wide range of such properties are accessible from 
molecular dynamics simulations.

+
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Forward Fourier 
Transformation

Charge transport

Ionic conductivity 
Σ(ω)



  

Computational spectroscopy

t = 0

⟨A(0)∙A(0)⟩
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Computational spectroscopy

?

+Dtt = 0

⟨A(0)∙A(0)⟩ ⟨A(0)∙A(Δt)⟩
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Computational spectroscopy

? ?
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Computational spectroscopy
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Computational spectroscopy

? ? ?
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Computational spectroscopy

?

+Dtt = 0
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Computational spectroscopy

?

+2Dtt = 0

⟨A(0)∙A(0)⟩ ⟨A(0)∙A(2Δt)⟩
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Computational spectroscopy

?

+3Dtt = 0

⟨A(0)∙A(0)⟩ ⟨A(0)∙A(3Δt)⟩

13
trajectory 

timeframes

• • •



  

Computational spectroscopy

⟨A(0)∙A(t)⟩
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Computational spectroscopy

Fourier- 
Transform

⟨A(0)∙A(t)⟩ AÃ(ω)
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Water under confinement

● Motion of single molecular 
dipoles

● Average

● Motion of sample sum dipole

● Sum

● Contains cross correlations

Connected via mutual orientational structure (?)

Difference single-particle vs. collective dynamics
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Water under confinement

Slow interfacial water Bulk-liquid 
Like core
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DRS absorption spectra 
of aqueous reverse micelles
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DRS absorption spectra 
of aqueous reverse micelles
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Collective dynamics include 
cross-correlations!
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Mutual dipole orientation: 
Kirkwood g-factor

Σμi μj(r)
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  ΔΦ = 44.8°

Phase 
difference:

45°

Δμ(t) = 45° Δμ(t) = 45°

Why does structure modulate 
dynamics? A thought experiment

Phase 
difference:

135°

ΔΦ = 0.8° ΔΦ = 43.6° ΔΦ = 180°
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… but is this a real thing?

Experimental setup: Phosphatidylcholines as surfactants, onion-
like vesicles, dielectric spectroscopy

aqueous phases

phosphatidylcholine 
walls

Gun-Sik Park,
Seoul National University
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… but is this a real thing?

Micelle, unconfined water Reverse micelle, confined water

Gun-Sik Park,
Seoul National University
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Can this be generalized 
to biological cells?

● Size beyond fully atomistic MD simulation

● Idea: Solve dielectric equations directly using a 
concentric spherical model
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Can this be generalized 
to biological cells?

 →Embedding mechanisms

wall thickness

water pool size

Some dipole 
of length |µ|=1

24



  

Thank you for your attention!
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