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Tree alignments and supertrees

 Alignment = Set of correspondences, aka (mis)matches (→Set of indels)

+ Validity: Consistency with ancestries in 𝑆 and 𝑇

 Alt.  Alignment = Supertree 𝑺 such that 𝑆 and 𝑇 can be recoved from 𝑺

Tree alignment problem (Jiang-Wang-Zhang 1995)
Input Two trees S ( 𝑆 = 𝑛1) and 𝑇 ( 𝑇 = 𝑛2)

Output Supertree maximizing weighted sum over (mis)matches



Jiang, Wang and Zhang (JWZ) DP algorithm

Forest vs Forest

Complexities
 Worst-case → 𝑂 𝑛1

2. 𝑛2
2 space, 𝑂 𝑛1

2. 𝑛2
2. max(𝑛1, 𝑛2) time

But at least one of (i, j, k, l) is first/last of its siblings
→ 𝜃 𝑛1. 𝑛2. max 𝑛1, 𝑛2 space, 𝜃 𝑛1. 𝑛2. max 𝑛1, 𝑛2

2 time
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 Average-case: Random, uniformly distributed, trees of length 𝑛1 and 𝑛2

→ 𝜃 𝑛1. 𝑛2 space, 𝜃 𝑛1. 𝑛2 time   [Herrbach, Dulucq, Denise, TCS 2010]

Remark: Holds for Boltzmann-distributed RNA 2D struct. (homopolymer model)



Intuition

Time complexity dictated by max degree of a node

Max. degree on average asymptotically constant



Counting alignments

Motivation: Ensemble analyses (e.g. MEA alignment, Bolz. Prob…)

Problem: DP scheme of Jiang-Wang-Zhang is ambiguous



Unambiguous decomposition/DP scheme

Theorem: DP scheme complete, unambiguous + complexities of JWZ 
Proof: by intimidation, mainly! (induction, seriously…)

Alternatively: Über-simple unambiguous decomposition (yet mildly incomplete)

[Berkemer, Höhner zu Siederdissen, Stadler, Algorithms 2017]



Counting tree alignments [Chauve Courtiel P, IJFCS 2018]

Scarier combinatorial specification/grammar

System of (algebraic) functional equations   → Generating functions  

→ Singularity analysis    → Asymptotic properties of tree alignments

Scary DP scheme 



Asymptotic properties of tree alignments

 #Tree alignments, over a total of n nodes, equivalent to

→ ≈ 1.5n tree alignments per pair of tree

 #(Mis)matches in random tree alignment:
 Expectation ~ n/6 
 Variance ~ n/6 

 Avg #supertrees per tree alignment exponential on length
yet, for all n, unique supertree for certain alignments
→ Exponential bias induced by JWZ decomposition



Trees easier to align than sequences?!

Input: Pair of random uniform sequences of length 𝑛1and 𝑛2
 Theorem: Needlemann-Wunsch runs in 𝜃 𝑛1. 𝑛2 expected time 

Input: Pair of random uniform trees of length 𝑛1and 𝑛2
 Reminder: JWZ algorithm (+ ours) run in 𝜃 𝑛1. 𝑛2 expected time 
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𝑛 = cumulated length of a pair
 For sequences:

 Both have expected length 𝑛
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 For trees: 
 Largest tree 𝑆+ has expected length in θ(𝑛)
 Smallest tree 𝑆- has expected length in θ( 𝑛)

The subquadratic complexity of JWZ is

only an artifact of the length distribution!

θ( 𝑛)

θ(𝑛)
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Conclusions/thanks

 Don’t be fooled by combinatorics people! (including this one…)

 Tree alignment amenable to ensemble analyses

 Who would like to co-implement our monster DP beauty?

Thanks to Bled Organizers + YOU 

Julien Courtiel Cédric Chauve


