

Alignment distance vs edit distance

Alignment distance vs edit distance

Alignment distance vs edit distance

Tree alignments and supertrees

- Alignment = Set of correspondences, *aka* (mis)matches (→Set of indels)
 + Validity: Consistency with ancestries in S and T
- Alt. Alignment = Supertree S such that S and T can be recoved from S

Tree alignment problem (Jiang-Wang-Zhang 1995)InputTwo trees $S(|S| = n_1)$ and $T(|T| = n_2)$ OutputSupertree maximizing weighted sum over (mis)matches

Jiang, Wang and Zhang (JWZ) DP algorithm

$$\operatorname{Align}\left(\bigwedge,\bigwedge\right) = \min \begin{cases} \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Del}\left(\bullet\right) \\ \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Subst}\left(\bullet,\bullet\right) \\ \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Subst}\left(\bullet,\bullet\right) \\ \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Subst}\left(\bullet,\bullet\right) \\ \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Del}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigwedge\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigwedge\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Ins}\left(\bullet\right) \\ \operatorname{Mign}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee\right) + \operatorname{Align}\left(\bigwedge,\bigvee_{i=1}^{i}\operatorname{Align}\left(\bigwedge,\bigvee_{i=1}^{i}\operatorname{Align}\left(\bigvee_$$

Complexities

Worst-case → O(n₁². n₂²) space, O(n₁². n₂². max(n₁, n₂)) time
 But at least one of (*i*, *j*, *k*, *l*) is first/last of its siblings
 → θ(n₁. n₂. max(n₁, n₂)) space, θ(n₁. n₂. max(n₁, n₂)²) time

Jiang, Wang and Zhang (JWZ) DP algorithm

Complexities

Worst-case → O(n₁². n₂²) space, O(n₁². n₂². max(n₁, n₂)) time
 But at least one of (*i*, *j*, *k*, *l*) is first/last of its siblings
 → θ(n₁. n₂. max(n₁, n₂)) space, θ(n₁. n₂. max(n₁, n₂)²) time

Jiang, Wang and Zhang (JWZ) DP algorithm

Complexities

• Worst-case $\rightarrow O(n_1^2, n_2^2)$ space, $O(n_1^2, n_2^2, \max(n_1, n_2))$ time

But at least one of (i, j, k, l) is first/last of its siblings $\rightarrow \theta(n_1, n_2, \max(n_1, n_2))$ space, $\theta(n_1, n_2, \max(n_1, n_2)^2)$ time

• Average-case: Random, uniformly distributed, trees of length n_1 and n_2

→ $\theta(n_1, n_2)$ space, $\theta(n_1, n_2)$ time [Herrbach, Dulucq, Denise, TCS 2010] Remark: Holds for Boltzmann-distributed RNA 2D struct. (homopolymer model)

Time complexity dictated by max degree of a node

Max. degree on average asymptotically constant

Counting alignments

Motivation: Ensemble analyses (*e.g.* MEA alignment, Bolz. Prob...)

Problem: DP scheme of Jiang-Wang-Zhang is **ambiguous**

Unambiguous decomposition/DP scheme

Theorem: DP scheme complete, unambiguous + complexities of JWZProof: by intimidation, mainly!(induction, seriously...)

Alternatively: Über-simple unambiguous decomposition (yet mildly incomplete) [Berkemer, Höhner zu Siederdissen, Stadler, Algorithms 2017]

Counting tree alignments

[Chauve Courtiel P, IJFCS 2018]

System of (algebraic) functional equations → Generating functions
 → Singularity analysis → Asymptotic properties of tree alignments

Asymptotic properties of tree alignments

#Tree alignments, over a total of n nodes, equivalent to

$$\frac{\sqrt{2}(3-\sqrt{3})}{24\sqrt{\pi}}\frac{6^{n}}{n\sqrt{n}}$$

 $\Rightarrow \approx 1.5^{n}$ tree alignments per pair of tree

- #(Mis)matches in random tree alignment:
 - ► Expectation ~ n/6
 - ► Variance ~ n/6
- Avg #supertrees per tree alignment exponential on length yet, for all n, unique supertree for certain alignments
 > Exponential bias induced by JWZ decomposition

Trees easier to align than sequences?!

Input: Pair of random uniform sequences of length n_1 and n_2

• Theorem: Needlemann-Wunsch runs in $\theta(n_1, n_2)$ expected time

Input: Pair of random uniform trees of length n_1 and n_2

• Reminder: JWZ algorithm (+ ours) run in $\theta(n_1, n_2)$ expected time

Trees easier to align than sequences?!

Input: Pair of random uniform sequences of length n_1 and n_2

• Theorem: Needlemann-Wunsch runs in $\theta(n_1, n_2)$ expected time

Input: Pair of random uniform trees of length n_1 and n_2

• Reminder: JWZ algorithm (+ ours) run in $\theta(n_1, n_2)$ expected time

Input: Random uniform pair of sequences of cumulated length *n*

• Theorem: Needlemann-Wunsch runs in $\theta(n^2)$ expected time

Input: Random uniform pair of trees of cumulated length n

Trees easier to align than sequences?!

Input: Pair of random uniform sequences of length n_1 and n_2

• Theorem: Needlemann-Wunsch runs in $\theta(n_1, n_2)$ expected time

Input: Pair of random uniform trees of length n_1 and n_2

• Reminder: JWZ algorithm (+ ours) run in $\theta(n_1, n_2)$ expected time

Input: Random uniform pair of sequences of cumulated length n

• Theorem: Needlemann-Wunsch runs in $\theta(n^2)$ expected time

Input: Random uniform pair of trees of cumulated length n

• Theorem: JWZ algorithm (+ ours) run in $\theta(n\sqrt{n})$ expected time

Aligning trees easier than aligning sequences?!

Of course, this is cheating...

n = cumulated length of a pair

- For sequences:
 - Both have expected length $\frac{n}{2}$
- For trees:

Of course, this is cheating...

n = cumulated length of a pair

- For sequences:
 - Both have expected length $\frac{n}{2}$
- For trees:
 - Largest tree S^+ has expected length in $\theta(n)$

Of course, this is cheating...

- *n* = cumulated length of a pair
- For sequences:
 - Both have expected length $\frac{n}{2}$
- For trees:
 - Largest tree S^+ has expected length in $\theta(n)$
 - Smallest tree S⁻ has expected length in $\theta(\sqrt{n})$

The subquadratic complexity of JWZ is only an artifact of the length distribution!

adadood
66666
$\dot{\phi}$ $\dot{\phi}$
<i>S</i> ⁺
s s
<u> </u>
0000000 00 00000000
agéos agé acagéosogé
000000000000000000000000000000000000000
$\theta(n) \stackrel{\scriptscriptstyle \diamond}{} \stackrel{\scriptscriptstyle \phi}{}$

Conclusions/thanks

Don't be fooled by combinatorics people! (inclu

(including this one...)

- Tree alignment amenable to ensemble analyses
- Who would like to co-implement our monster DP beauty?

Thanks to Bled Organizers + YOU

Julien Courtiel

Cédric Chauve

