# The effect of modified nucleotides on secondary structure prediction in tRNA

Yuliia Varenyk TBI

Bled Winterseminar

February 13, 2023



## Modifications in tRNA sequences



[1] Lorenz, C., Lünse, C.E., & Mörl, M. (2017). tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules, FIG1

RNA secondary structure prediction -Nearest Neighbor energy model



- Secondary structures can be uniquely decomposed into loops.
- Contributions of a base pair only depends on neighboring pairs.
- Each loop is assigned a free energy contribution<sup>[2]</sup>.

[2] Turner et al., "NNDB: The nearest neighbor parameter database for predicting stability of nucleic acid secondary structure.", 2009, NAR 38, D280-D282

Images by Ronny Lorenz

# RNA modifications & secondary structure prediction

Traditional methods lack the means for handling modifications in RNA structure prediction.

- Implementations are limited to the standard RNA nucleotide alphabet AUGC, no complete NN energy parameter set for other nucleotides is available.
- ViennaRNA Package<sup>[3]</sup> provides a plug-in mechanism to adjust free energy parameters and to influence the candidate structure space.

Example: human tRNA Phe (tdbR00000103). 17 out of 76 nucleotides are modified.



Structure prediction as unmodified sequence

Structure prediction including modifications

# Databases of RNA modifications

- MODOMICS [Dunin-Horkawicz et al., 2006, Boccaletto et al., 2018]
- Transfer RNA database (tRNAdb) [Jühling et al., 2009]
- RNA Modification Database (RNAMDB) [Cantara et al., 2011]
- Small Subunit rRNA Modification Database (SSUmods) [McCloskeyand Rozenski, 2005]

### Modifications in tRNAdb



# Location of modified bases in tRNA sequences (tRNAdb)



# Evaluation of RNA secondary structure prediction (MFE)

Matthews Correlation Coefficient

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$ 

- Assessment of influence of each individual modification on the prediction results:
  - apply constraints for individual modification;
  - compare reference structure and prediction result with modification constraints (MCC);
  - bootstrap sample of tRNA dataset (1000 repeats);
  - ◊ analyze obtained sampling distribution.

# Structure prediction of sequences from tRNAdb



tRNAdb dataset - all (623 sequences)

- all mask all modified nucleotides to stay unpaired
- RTb mask nucleotides to stay unpaired if their modification is known to block RT
- symbol mask certain specified nucleotide to stay unpaired
- symbol\* apply energy parameter corrections

#### Structure prediction of sequences from tRNAdb



Structure prediction of sequences from tRNAdb - only sequences that contain the modification included



# Prediction quality upon position-dependent constraints

|         | Acc-stem | D-stem | D-loop | Ac-stem | Ac-loop | V-arm | T-stem | T-loop | Hinge  |
|---------|----------|--------|--------|---------|---------|-------|--------|--------|--------|
| Р       | 28       | 101    | 11     | 339     | 118     | 12    | 19     | 506    | 8      |
|         | -0,001   | -0,022 | 0      | -0,008  | -0,022  | 0     | 0      | 0      | 0      |
| D       | 0        | 0      | 436    | 0       | 0       | 119   | 0      | 0      | 0      |
|         | 0        | 0      | 0,058  | 0       | 0       | 0,006 | 0      | 0      | 0      |
| T (m5U) | 1        | 1      | 0      | 1       | 0       | 0     | 0      | 330    | 1      |
|         | 0        | 0      | 0      | 0       | 0       | 0     | 0      | 0,02   | 0      |
| ? (m5C) | 8        | 1      | 0      | 5       | 13      | 164   | 104    | 1      | 0      |
|         | 0        | 0      | 0      | 0       | 0       | 0,011 | 0      | 0      | 0      |
| " (m1A) | 0        | 0      | 0      | 1       | 0       | 0     | 0      | 234    | 48     |
|         | 0        | 0      | 0      | 0       | 0       | 0     | 0      | 0,01   | 0      |
| L (m2G) | 31       | 171    | 1      | 0       | 0       | 0     | 0      | 0      | 37     |
|         | -0,003   | -0,003 | 0      | 0       | 0       | 0     | 0      | 0      | -0,024 |
| 7 (m7G) | 0        | 0      | 0      | 0       | 5       | 213   | 0      | 0      | 0      |
|         | 0        | 0      | 0      | 0       | 0       | 0,046 | 0      | 0      | 0      |

- decrease in prediction quality upon constraint

- increase in prediction quality upon constraint

- same prediction quality upon constraint, even though the modification is abundant

# Prediction quality upon position-dependent constraints



- decrease in prediction quality upon constraint
- increase in prediction quality upon constraint
- same prediction quality upon constraint, even though the modification is abundant

# Conclusions

#### Observations

- Identification of modifications of potential interest (e.g. 7-methylguanosine in eukaryotes and bacteria).
- Prediction improvement using constraints.

#### Outlook

- Further investigation of the structural effects of modifications positionwise.
- Investigation of modification effects in rRNA, mRNA.
- Assembly of database of structural effects of nucleotide modifications from available literature, partner groups of RNA DECO.

# Thank you!

Ivo Hofacker

Ronny Lorenz

Thomas Spicher

TBI group

**RNA** Deco

**Bled Winterseminar** 

