Annotation-independent Search for Synteny Anchors Karl Kaether

Problem **Orthology Inference**

- Mostly based on sequence similarity
- Complicated by (1) sequence divergence, (2) genomic rearrangements:
 - (1) genome comparisons which are sensitive enough to detect similarity over large phylogenetic distances become difficult/expensive
 - (2) duplications and losses lead to varying number of potential orthologs
- Conserved order of genetic elements (synteny) can help in such situations

Duplications as Major Driver of Evolution A Current Example

 Protein family of gene responsible for particular fly phenotype underwent frequent duplication/loss events in phylogenetically restricted set of species

- Other copies do not seem to convey function in D. mel.
- To determine where and possibly how function originated, phylogenetic tracking of functional copy is essential

Average copy number of halo family in taxon

Problem **Orthology Inference**

- Synteny information can help in such situations
- duplication/loss events

Article **SMORE:** Synteny Modulator of Repetitive Elements

Sarah J. Berkemer ^{1,2}, Anne Hoffmann ¹, Cameron R. A. Murray ³ and Peter F. Stadler 1,2,4,5,6,7,8,* 🝺

especially with increasing amount of available genomes this is promising

e.g. maximum parsimony algorithm to build gene tree with minimum amount of gene

Another Problem Finding Good Synteny Anchors

-> often unavailable, of bad quality and expensive to compute

Maybe one can find them irrespective of annotations

Usually based on genome annotations and multiple sequence alignments

Annotation-independent Search for Synteny Anchors Idea

What are good synteny anchors?

- Conserved across large phylogenetic distances
- Low copy number variation
- -> type of genetic element does not matter

-> all sequences within a genome which are fairly unique are potential anchors

Annotation-independent Search for Synteny Anchors Problem Statement

Given: Genome

Wanted: All subsequences which are at least X different from all other subsequences within a genome

X?? - similarity score like edit distance/hamming distance

Then: If those subsequences are similar above X (+ some tolerance) to a subsequence of another genome, they make a good synteny anchor pair

pairs (groups)

- -> Goal is to create sets of potential anchors per genome and map matching

Annotation-independent Search for Synteny Anchors First Attempts

1. Count k-mers

2. Sum up counts within a window

3. Take best x %

Annotation-independent Search for Synteny Anchors First Attempts

- 3. Blast against own Genome
- iteratively with more sensitive word size parameter and considering fragmented hits (chaining of hits)
- 4. Concatenate consecutive hits
- 5. Blast and chain again
- 6. Put into categories according to score value

matching anchors

7. Pairwise blast + chaining of anchor sets of different genomes -> mapping of

Moving Parts of Pipeline

- k and allowed error of kmer counting
- Window size, overlap, operation of kmer count aggregation
- Blast parameters word size, gapped/ungapped
- Categories and respective score values
- Many other open technicalities, e.g. further concatenation / final definition of anchor regions missing as of now

Some Preliminary Results

- 25 Drosophila species
- Pretty good genomes
- Annotations
- High-confidence species tree

-> approach can be evaluated well

Some Preliminary Results

How many potential anchors does one get?

- 13-mers, no errors	40
- 300 nt windows	35
 overlapping at mid-points 	25
- blast word size of 13 and 9	Count
- categories shown	15
- sizes between 300 and \sim 6000	5

Number of Potential Anchors of Different Categories

Caption

How many matches do they have in other genomes?

Number of Matches of Anchors in Other Genomes

Recall of Annotated Elements *Define Recall

Recall of Annotated Genetic Elements (D.mel - anchors with >= 15 matches)

Recall of Annotated Genetic Elements (D.mel - anchors with >= 20 matches)

Caption

Preliminary Results - How to evaluate anchors and their matches

- Reminder: wanted are unique-ish sequences with one-to-one correspondence in other genomes
- evaluation approach:
 - BUSCOs: set of single-copy gene models curated for different taxons

Anchor Evaluation - BUSCOs

Preliminary Results - Duplicated BUSCOs

Recall of Duplicated BUSCOs (all anchors) miranda

Recall of Duplicated BUSCOs (>= 15 matches anchors) miranda

BUSCOs as measure for quality of matching

Given there is a BUSCO in other genome:

True positives - Match corresponds to other BUSCO

• 88 %

False negatives - No match or wrong match (2 %) despite BUSCO present

• 12 %

Given there is no BUSCO in other genome

False Positives - Match although no BUSCO detected

• 28 %

True negatives - No Match

• 72 %

Recall: 88 %

Precision: 76 %

Sampling of False Positives

Optimal local alignments (match 2, mismatch -1, linear gaps -2):

- Anchor genome x + -500 nt (with match in genome y) identified BUSCO genome y:
 - 1345 score points
- Anchor genome x match region where no BUSCO identified genome y:
 - 1075 score points
- Anchor genome x random other BUSCO genome y:
 - 638 score points

Annotation-independent Search for Synteny Anchors More Distant Genomes

BUSCOs as measure for quality of matching

Given there is a BUSCO in other genome:

True positives - Match corresponds to other BUSCO

• 57 %

False negatives - No match or wrong match (1 - 2 %) despite BUSCO present

• 43 %

Given there is no BUSCO in other genome

False Positives - Match although no BUSCO detected

• 22 %

True negatives - No Match

• 78 %

Recall: 57 %

Precision: 72 %

Sampling of False Positives

Optimal local alignments (match 2, mismatch -1, linear gaps -2):

- Anchor genome x + -500 nt (with match in genome y) identified BUSCO genome y:
 - 1004 score points
- Anchor genome x match region where no BUSCO identified genome y:
 - 903 score points
- Anchor genome x random other BUSCO genome y:
 - 625 score points

- Systematic Search for good parameters of pipeline
- Qualitative improvements (e.g. local alignments, extension of anchors,...)
- Application to example from Heidelberg group

Additional Slides

- Evaluation with OrthoFinder
- OrthoFinder takes proteomes and clusters proteins into orthogroups

OrthoFinder recall of single-copy proteins with some tolerance

Caption

OrthoFinder recall of single-copy proteins with some tolerance

Caption

Assessment of Anchor Matches

- Relative rate of correct identifiction for all matches of anchors in single-copy proteins
- Aggregated over all species (no outlier)
- Corresponds to a recall of ~ 67%

Assessment of Anchor Matches

- With tolerance
- Corresponds to a recall of ~ 80%
- Rudimentary re-evaluation showed that a considerable proportion of missing correscondense is due to wrong mapping of proteins to genome

