Randomization of chemical reaction networks

Christoph Flamm

xtof@tbi.univie.ac.at

Institute for Theoretical Chemistry
University of Vienna

joined work with:
Philipp Honegger (HMS)
Walter Fontana (HMS)

Bled, February 16 2023

universitat
wien



http://www.tbi.univie.ac.at/~xtof/

Widespread use of random chemistry models
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Mathematical random network models

Purpose of prototype models:
® null models (statistic significance of observed features).

® insight how observed features arise from construction rules.

The most common prototype models:
® Erdos-Rényi (ER) Model (small-world).
® Watts-Strogatz (WS) Model (small world + local clustering).
© Barabdsi-Alberts (BA) Model (scale-free).

Basic assumption: A nodes can interact with any other node.
Assumption fails for chemistry!!

Albert R & Barabdsi A-L (2002), Statistical mechanics of complex networks, Rev Mod Phys 74:47-97
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Randomization strategies for chemical networks

® Randomize network structure
a. construct a large network instance
b. thin out network by random
® vertex sampling.
® edge sampling.
® walk sampling.
® Randomize network chemistry
® reaction preception method.
® mechanistic constraints on rections.

Q1: Are networks generated by these strategies chemical?
A: Not necessarily, only if all reactions are mass balanced =; (

Q2: Is every directed hypergraph a chemical network?
A: No, only if the network is conservative! (i.e. mass preserving)!

Im> 0 suchtthat m’ - S =0

T Stefan Miiller, Christoph Flamm, Peter F Stadler, What makes a reaction network “chemical’? J Cheminfo 14:63,
2022 doi:10.1186/s13321-022-00621-8

3/20


https://doi.org/10.1186/s13321-022-00621-8

What to preserve in chemical reactions ...

.apart from mass?

oo»b oc»b

c.n.o ON

Reaction features:

® sidedness

® role change

® arity
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Rewiring strategies 1/2
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.operation; MF ... molecular formula; Mdeg . ..in/out degree of molecule node; Rdeg . . . reaction node degree;
Mdegmt ... total degree of molecular node
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Operation 3-digit code:
- 1st digit ...one-sided (only educt
or product side of reaction)
2nd digit ...role change (educts
become products and vice versa)
3rd digit ...arity (number of
educts and products of a reaction)

in/out degree of molecule node; Rdeg . . . reaction node degree;
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(Auto)Catalyst as Sets

{A,B,C}

X +y +z

@ Rate acceleration: r; — r3 must
together proceed faster than the
spontanious process.

@® Set of catalysts is conserved.

©® Each reaction involve:
® catalysts.
® at least 1 catalyst as reactant.
® at least 1 catalyst as product.

O The production of a species from
the set of catalysts depends on the
presence of another species from
the set of catalysts.

XI + y/ + Z/

© + @ induce the presence of a cycle. Species O show turnover, species O remain conserved.

For catalysis ignore gray dashed arrows.
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The stoichiometric matrix S
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QW= N N < < MW KWK

I
x + A 1 B + X
v+ B 2 2.C + v
r3

z + C — A+ 7

Note that a catalyst, which enters and exits a reaction with the same stoichiometry, has as well a zero entry in S.
The yellow highlighted region is a restriction of the S to the autocatalytic cycle. The species in the cyan region are
considered externl to the autocatalytic cycle, and are thought to be chemo-stated.
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Primer: Carbohydrate Chemistry (CH,0),

Sugars are organic compounds with an C:H:0 ratio of 1:2:1.

The reactivity of sugars is largely dominated by the carbonyl group
(C=0) and the vicinal alcohol groups (HO-C-C-0OH).

The keto-enol isomerization reaction and the aldol condensation a
C-C bond formation reaction are of importance.

s
H _b? O =
Enolization
O —
M /H H
HO O ==—H @)
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RY >/R=<J y >j<\/
\"ﬁW /H \l/ /\_O/H

0O H==O 0=—H
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Core Cycle of the Formose Process
N\

o\\ / \-\ O\\

HO HO

OH o OH

Ho N\

HO

HO
o ~— B o=
OH OH
HO

Type 1 autocatalytic core; O keto-enole isomerization, B Aldol / retro-Aldol reaction. Note that the reaction
sequence from glycolealdehyde to erytrose is compressed into a single reaction (r;) in the type 1 autocatalytic core
figure. Butlerov AM (1861), Einiges iiber die chemische Structur der Kérper, Zeitschrift fiir Chemie 4:549-560;
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Amino acid thioesters, cystamine autocatalytic system

sr\/ R i R
\/S NH, /\l( = ( \l(
| [ 0o )
0 N

NH,

Type 3 autocatalytic core; The reaction chemistry is thiol-disulfide exchange O, thiol-thoester exchange O and
native chemical ligation B; orange arrows connect food or wast molecules to the autocatalytic cycle, which has a
type 3 topology; cystamine (in the center) is the “autocatalyst”; [Semenov et al Nature 2016]
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Rebeck’s Autocatalytic System

L
o

Type 3 autocatalytic core; Molecules in cyan boxes are sequestered in a molecular cage. The synthesis of the
autocatalytic species and its storage, occures temporally, spatially, and chemically distinct from the process that
depletes the store in an autocatalytic fashion. [Chen et al PNAS 2001]
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Calvin—Benson—Bassham Cycle
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1,3-PGA

ADP 6
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Finding Autocatalysis in reaction networks
A

A Find autocatalytic skeleton:

@ Find fission and merging points.

® Connect fission and merginf points by paths.
B Embed autocatalytic skeleton in hypergraph:

@ Insert induced edges (highlighted in green labeled i).

@® Add species and edges attached to sceleton reaction nodes.
(highlighted in yellow; nodes: ii immediate substrates and
products; iii mediator species).
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Poly-unsaturated fatty acid system (PUFA)
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Red bull's eye marks autocatalytic species. Reactions are yellow boxes. Skeleton connected by black arrows. Red /

green cross-links are introduced in embeding phase and render the network catalytic.
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Usmg Strategy 111 to randomlze GEMs

GEM ... genome-scale metabolic models
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Chlamydomonas reinhardtii

Single-celled green alga.
Extended lipid metabolism.
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Conclusion

@ A formalism for Chemistry must be expressive enough to
capture the major characteristics of reactive systems:

® mass conservation.
® structural change.
® atom-to-atom mappings.
® Graph grammar formalization has the right level of
abstraction.
©® Chemical reaction space is vast, hence:

® computational exploration is indispensable.
® hyperflows allows to search for complex reaction patterns.

® automated atom tracking in reaction networks is important.

O Computational methods can be a powerful way to gain insight

into complex chemistry.
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Validation
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- Community cultures
+ Proteomics, metabolomics
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« Isotope tracing by proteomics,
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