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Chemical reaction networks, two problems

I) How does the structure of  a CRN relate to what it can and cannot do?

II) How do I know what CRN I’m looking at*? 



Chemical reaction networks in chemistry, two problems

I) How does the structure of  a CRN relate to what it can and cannot do?

II) How do I know what CRN I’m looking at*? 

*(in a way where I can quantitatively account for all my experiments with a chemically sound 
description)



CRNs in Chemistry

• CRNs allow us to better understand chemistry.

• Chemistry provides clues towards understanding CRNs, and in turn better understanding

dynamical systems.

• To pursue these goals, we need CRNs with ‘chemical’ properties



CRNs in Chemistry

• To pursue these goals, we need CRNs with ‘chemical’ properties

• What makes a reaction network chemical? [1]

Conservation laws with chemical interpretations, local energy conservation (detailed balance), 
…

• What else makes a reaction network ‘chemical’?



Chemists assume implicit detail

“=“



“My colleagues can see more”

Different representations, but not contradictory: we’re talking about the same thing
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A system doesn’t have ‘one reaction network’, but a 

family of agreeing reaction networks of varying detail

Experimental resolution dictates the CRN we can see. 
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* Robustness to detail: predicted phenomenology is not

expected to be altered by adding in more intermediates.

What else makes a reaction network ‘chemical’?



Nonrobustness, a very small example

2X → 3X

Blows up in finite time

𝐍𝐗 = 𝟐

< 𝒕𝟐→𝟑 >=< 𝒕𝟑→∅ >

2 X → X2 → 3 X 

No blow up in finite time

2X →3X intrinsically fails to be a good 

approximation on all but the shortest times.

* Robustness to detail: predicted phenomenology is not

expected to be altered by adding in more intermediates.



Several concepts in chemistry (e.g. catalysis) 

are explicitly defined in terms of  hierarchy

of  descriptions.
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E.g. to formalize autocatalysis in chemistry we use

that reaction networks have family of  

representations.
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→ Under nonambiguity, list of  reactions maps 1-to-1 to 

stoichiometric matrix.



No “absolute” CRN as a theoretical requirement

Nonambiguity: 

reactants ≠ products in the same reaction

A+B ⇄ 2 A ;     A+B ⇄ AB ⇄ 2 A 

A methodological advantage:

→ Under nonambiguity, list of  reactions maps 1-to-1 to 

stoichiometric matrix.



More steps, simpler steps 

We only need two types of  reactions



More steps, simpler steps 

A species involved in >3 reactions

can be reduced to several

triconnected species

𝑠(3) = 3



2 Fundamental building blocks

A ⇄ B

A ⇄ B + C

A ⇄ B + C
B ⇄ C

A + B ⇄ C
C ⇄ D + E

A + B ⇄ D + E

A ⇄ 2B

A methodological advantage

More variables, reactions less structural elements, more regularity

- Dramatically reduces # cases to check in proofs

- Facilitates constructions

- Endows mathematical constructions with ‘nice’ properties



Simple building blocks Many equivalent representations

+ Mass action+

Normally in CRN Theory, 

Stoichiometric matrix ≠ hypergraph ≠ dynamic equations 

≠reaction list ≠ characteristic polynomial(s) ≠ 

Upon regularizing structure, representations become

equivalent, and new representations become available

Stoichiometric matrix = hypergraph = dynamic equations =
Reaction list = characteristic polynomial(s)  = Big polynomial = 

generalized Jacobian = Jacobian for currents = Hamiltonian = …

(+Nonambiguity)



Simple building blocks Many equivalent representations

+ Mass action+ (+Nonambiguity)

…



Simple building blocks Many equivalent representations

+ Mass action+ (+Nonambiguity)

Ipso facto,

→ questions can be reformulated as questions about the object of  our choice.

→ representations acquire deeper, more regular structure

→ we can go back and forth between representations to look for easy insights, 

simple(r) proofs

Upon regularizing structure, representations become

equivalent, and new representations become available

Stoichiometric matrix = hypergraph = dynamic equations =
Reaction list = characteristic polynomial(s)  = Big polynomial = 

generalized Jacobian = Jacobian for currents = Hamiltonian = …



Big polynomial

𝑑𝑡𝑥𝑘= 
𝜕2B

𝜕𝑥𝑘
2



Regularized CRNs are never divergence-free

𝑑𝑡𝑥𝑘= 
𝜕2B

𝜕Xk
2

div 𝑑𝑡𝒙 =

𝑘

𝜕3B

𝜕Xk
3 < 0

CRN properties that critically rely on divergence-free dynamics

are not robust and should not be expected in chemistry (nor ecology)



Regularized CRNs are never divergence-free

CRN properties that critically rely on divergence-free dynamics

are not robust and should not be expected in chemistry

Lotka-Volterra  

oscillates

X → 2 X,  X + Y → 2Y,  

Y → ∅

Rock-Paper-Scissers (RPS-3) 

oscillates

X + Y → 2 X, Y + Z → 2Y,

Z + X → 2Z

(RPS-4) 

quasi-periodic

X + Y → 2 X, Y + Z → 2Y,

Z +W → 2 Z,W + X → 2W

Stable, but not

asymptotically stable
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Linearized dynamics

Full dynamics

For regularized network, the Jacobian

also expresses non-linearized dynamics



Jacobian

Linearized dynamics

Full dynamics

One can deduce simple rules to construct a characteristic

polynomial𝑃𝜆(𝐽) from (hyper)graph, and vice versa. 

A factor graph.

A factor of  coefficients occurs in the characteristic

polynomial if it is not forbidden

Forbidden: i) nearest neighbors, ii) cycles in 

factor graph

For regularized network, the Jacobian

also expresses non-linearized dynamics
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Jacobian

Linearized dynamics

Full dynamics

One can deduce simple rules to construct a characteristic

polynomial𝑃𝜆(𝐽) from (hyper)graph, and vice versa. 

A factor graph.

A factor of  coefficients occurs in the characteristic

polynomial if it is not forbidden
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factor graph
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More elaborate rules with bimolecular reactions



Jacobian for currents



Jacobian for currents – Handshake stability

𝑠(3) = 0



Jacobian for currents – Handshake stability

Gershgorin circle theorem

𝑠(3) = 0



Jacobian for currents – Handshake stability

Handshake stable

If each species in a CRN engages in at most 2 reactions, then the CRN is handshake stable

i.e. all eigenvalues of  jacobian for currents are nonpositive.

𝑠(3) = 0



Deficiency 𝛿, invariant deficiency 𝛿

“properties of  a system”   vs “properties of  a specific description”

𝛿ʘ, 𝑠(3) 𝛿 𝛿ʘ =  𝑐 − 𝑐𝑜  = 𝑐𝑜𝑜

Invariant deficiency: 

# nontrivial cycles

(cycles that are not purely

unimolecular)

𝛿ʘ = 1, 𝛿=1, 𝑠(3)= 0 𝛿ʘ = 1, 𝛿=0, 𝑠(3)= 0

𝛿 = 0 is a well-known guarantee of  stability



Deficiency 𝛿, invariant deficiency 𝛿

“properties of  a system”   vs “properties of  a specific description”

𝛿ʘ, 𝑠(3) 𝛿 𝛿ʘ =  𝑐 − 𝑐𝑜  = 𝑐𝑜𝑜

Invariant deficiency: 

# nontrivial cycles

(cycles that are not purely

unimolecular)

𝛿ʘ = 1, 𝛿=1, 𝑠(3)= 0 𝛿ʘ = 1, 𝛿=0, 𝑠(3)= 0

𝛿 = 0 is a well-known guarantee of  stability

Open question:

To what extent are conclusions based on 

deficiency robust to regularization?



Generating robust invariants & CRN index laws

(hyper)Graph Transform +

Fundamental theorem of Linear Algebra

Robust topological properties of  systems +

Structural laws for chemical networks



How do I know what CRN I’m looking at?

Try to fit one specific

hypothesis after another.

Battleship



How do I know what CRN I’m looking at?

Try to fit one specific

hypothesis after another.

Battleship

Exponentially narrow down 

the options

Guess who?



Measurable indices

Exponentially narrow down 

the options

Guess who?

Exponentially narrow down the options by 

measuring various families of  indices 

characterizing CRN



Measurable indices

Exponentially narrow down 

the options

Guess who?



Measurable indices

Exponentially narrow down 

the options

Guess who?



An example of  an index, data dimension d

d = v - ℓ “# variables - # constraints”

Rank estimation of  mean-subtracted data

d=2 

(Isosbestic line*)

d=1 

(isosbestic point*)

d=3 



Many chemical phenomena lower data dimension

𝐶 ⟵ 𝐴 + 𝐵 ⟶ 𝐷
𝑙𝑠 = 2, 𝑙𝑖𝑟𝑟= 1 

𝐶 ⇄ 𝐴 + 𝐵 ⇄ 𝐷
𝑙𝑠 = 2, d = 2

𝑑

1

2

(effectively) irreversible collinear reactions

Fast equilibria + chemostats

(e.g. due to phase separation)

Local isomer equilibria

𝐴 ⇄ 𝐵 ⇄ 𝐶
𝑙𝑠 = 1  

𝐴 ⇄ 𝐵 ⇄ 𝐶
𝑙𝑠 = 1, 𝑙𝑖𝑠𝑜−𝑒𝑞 = 1  

2

1

fast



Dramatic dimension reduction with nanoscopic phase separation

d=1d=8d=8



Dramatic dimension reduction with nanoscopic phase separation

d=1d=8d=8

In dynamic combinatorial chemistry,

one oftentimes observes very

low-dimensional data (d=1,2)

in spite of there being many

species that can be isolated

(e.g. by HPLC-MS)



Chemical reaction networks, two problems

I) How does the structure of  a CRN relate to what it can and cannot do?

II) How do I know what CRN I’m looking at*? 



Thank you

Robert Pollice Daan van de Weem

Martijn van Kuppeveld
Ottolab

Hermanslab
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