Some structural aspects of CRNS in theory and experiment

Alex Blokhuis

IMDEA Nanociencia, Madrid

Chemical reaction networks, two problems

I) How does the structure of a CRN relate to what it can and cannot do?

II) How do I know what CRN I'm looking at*?

Chemical reaction networks in chemistry, two problems

I) How does the structure of a CRN relate to what it can and cannot do?

- II) How do I know what CRN I'm looking at*?
- *(*in a way where I can quantitatively account for all my experiments with a chemically sound description*)

CRNs in Chemistry

- CRNs allow us to better understand chemistry.
- Chemistry provides clues towards understanding CRNs, and in turn better understanding dynamical systems.
- To pursue these goals, we need CRNs with 'chemical' properties

CRNs in Chemistry

What makes a reaction network "chemical"?

Stefan Müller¹, Christoph Flamm² and Peter F. Stadler^{2,3,4,5,6,7*}

Müller et al. Journal of Cheminformatics (2022) 14:63 https://doi.org/10.1186/s13321-022-00621-8

. . .

- To pursue these goals, we need CRNs with 'chemical' properties
- What makes a reaction network chemical? [1]

Conservation laws with chemical interpretations, local energy conservation (detailed balance),

• What else makes a reaction network 'chemical'?

Chemists assume implicit detail 🛛 🗟

"—"

FRANCIS A. CAREY and RICHARD J. SUNDBERG

"My colleagues can see more"

Different representations, but not contradictory: we're talking about the same thing

Resolution of CRNs: no 'absolute' representation 🦓 –

Different representations, but not contradictory: we're talking about the same thing

Resolution of CRNs: no 'absolute' representation 🦓 –

L. Pasteur, A. Edelfelt (1885) L. Pasteur, A. Edelfelt (1885)

Different representations, but not contradictory: we're talking about the same thing

"reactions are not absolute"

What else makes a reaction network 'chemical'?

A system doesn't have 'one reaction network', but a family of <u>agreeing</u> reaction networks of varying detail

Experimental resolution dictates the CRN we can see.

"reactions are not absolute"

* Robustness to detail: predicted phenomenology is not expected to be altered by adding in more intermediates.

What else makes a reaction network 'chemical'?

A system doesn't have 'one reaction network', but a family of <u>agreeing</u>* reaction networks of varying detail

Experimental resolution dictates the CRN we can see.

L. Pasteur, A. Edelfelt (1885)

Nonrobustness, a very small example

* Robustness to detail: predicted phenomenology is not expected to be altered by adding in more intermediates.

> $2X \rightarrow 3X$ Blows up in finite time $N_X = 2$ $< t_{2\rightarrow 3} > = < t_{3\rightarrow \emptyset} >$

 $2 X \rightarrow X_2 \rightarrow 3 X$

No blow up in finite time

 $2X \rightarrow 3X$ intrinsically fails to be a good approximation on all but the shortest times.

No "absolute" CRN as a theoretical requirement 🌮

Universal motifs and the diversity of autocatalytic systems

 Alex Blokhuis
 David Lacoste, and Philippe Nghe
 Authors Info & Affiliations

 Edited by Peter Schuster, University of Vienna, Vienna, Austria, and approved September 1, 2020 (received for review June 30, 2020)

 September 28, 2020
 117 (41) 25230-25236
 https://doi.org/10.1073/pnas.2013527117

Several concepts in chemistry (e.g. catalysis) are explicitly defined in terms of hierarchy of descriptions.

L. Pasteur, A.	
Edelfelt (1885)	

L. Pasteur, A. Edelfelt (1885)

No "absolute" CRN as a theoretical requirement

E.g. to formalize autocatalysis in chemistry we use that reaction networks have family of representations.

See also:

Defining Autocatalysis in Chemical Reaction Networks

Jakob L. Andersen, Christoph Flamm, Daniel Merkle, Peter F. Stadler

Universal motifs and the diversity of autocatalytic systems

 Alex Blokhuis
 David Lacoste, and Philippe Nghe
 Authors Info & Affiliations

 Edited by Peter Schuster, University of Vienna, Vienna, Austria, and approved September 1, 2020 (received for review June 30, 2020)

 September 28, 2020
 117 (41) 25230-25236
 https://doi.org/10.1073/pnas.2013527117

Several concepts in chemistry (e.g. catalysis) are explicitly defined in terms of hierarchy of descriptions.

L. Pasteur, A. Edelfelt (1885)

L. Pasteur, A. Edelfelt (1885)

No "absolute" CRN as a theoretical requirement 🔅 –

Nonambiguity:

reactants \neq products in the same reaction

 $A+B \rightleftharpoons 2A; A+B \rightleftharpoons AB \rightleftharpoons 2A$

Universal motifs and the diversity of autocatalytic systems

 Alex Blokhuis
 David Lacoste, and Philippe Nghe
 Authors Info & Affiliations

 Edited by Peter Schuster, University of Vienna, Vienna, Austria, and approved September 1, 2020 (received for review June 30, 2020)

 September 28, 2020
 117 (41) 25230-25236
 https://doi.org/10.1073/pnas.2013527117

Several concepts in chemistry (e.g. catalysis) are explicitly defined in terms of hierarchy of descriptions.

L. Pasteur, A.	
Edelfelt (1885)	=

L. Pasteur, A. Edelfelt (1885)

No "absolute" CRN as a theoretical requirement 🌮

Universal motifs and the diversity of autocatalytic systems

 Alex Blokhuis
 David Lacoste, and Philippe Nghe
 Authors Info & Affiliations

 Edited by Peter Schuster, University of Vienna, Vienna, Austria, and approved September 1, 2020 (received for review June 30, 2020)

 September 28, 2020
 117 (41) 25230-25236
 https://doi.org/10.1073/pnas.2013527117

Nonambiguity:

reactants \neq products in the same reaction

 $A+B \rightleftharpoons 2A; A+B \rightleftharpoons AB \rightleftharpoons 2A$

A methodological advantage:

 \rightarrow Under **nonambiguity**, list of reactions maps 1-to-1 to stoichiometric matrix.

No "absolute" CRN as a theoretical requirement $\ll \rightarrow$

Nonambiguity:

reactants \neq products in the same reaction

 $A+B \rightleftharpoons 2A; A+B \rightleftharpoons AB \rightleftharpoons 2A$

A methodological advantage:

 \rightarrow Under **nonambiguity**, list of reactions maps 1-to-1 to stoichiometric matrix.

Universal motifs and the diversity of autocatalytic systems

 Alex Blokhuis
 □
 David Lacoste
 and Philippe Nghe
 □
 Authors Info & Affiliations

 Edited by Peter Schuster, University of Vienna, Vienna, Austria, and approved September 1, 2020 (received for review June 30, 2020)

 September 28, 2020
 117 (41) 25230-25236
 https://doi.org/10.1073/pnas.2013527117

More steps, simpler steps

We only need two types of reactions

More steps, simpler steps

$$s^{(3)} = 3$$

A species involved in >3 reactions can be reduced to several triconnected species

2 Fundamental building blocks

Simple building blocks ⇔ Many equivalent representations

+ Mass action

(+Nonambiguity)

Normally in CRN Theory, Stoichiometric matrix \neq hypergraph \neq dynamic equations \neq reaction list \neq characteristic polynomial(s) \neq Upon regularizing structure, **representations become equivalent**, **and new representations become available** Stoichiometric matrix = hypergraph = dynamic equations = Reaction list = characteristic polynomial(s) = Big polynomial = generalized Jacobian = Jacobian for currents = Hamiltonian = ...

Simple building blocks \iff Many equivalent representations

Directed* Hypergraph	Dynamic Equations	Reaction List	Stoichiometric Matrix	Big Polynomial	Hamiltonian
1 Y 3 Z	$\begin{split} \mathcal{I}_1 &= \kappa_1^+[X] \cdot \kappa_1^-[Y] \\ \mathcal{I}_2 &= \kappa_2^+[Y] \cdot \kappa_2^-[Z] \\ \mathcal{I}_3 &= \kappa_3^+[Z] \cdot \kappa_3^-[X] \\ \mathbf{d}_t[X] &= -\mathcal{I}_1 + \mathcal{I}_3 \\ \mathbf{d}_t[Y] &= -\mathcal{I}_2 + \mathcal{I}_1 \\ \mathbf{d}_t[Z] &= -\mathcal{I}_3 + \mathcal{I}_2 \end{split}$	1 $X \rightleftharpoons Y$ 2 $Y \rightleftharpoons Z$ 3 $Z \rightleftharpoons X$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B} = \mathcal{Q}_{1}^{+} \mathcal{J}_{1}^{+} + \mathcal{Q}_{2}^{+} \mathcal{J}_{2}^{+} + \mathcal{Q}_{3}^{+} \mathcal{J}_{3}^{+} \\ + \mathcal{Q}_{1}^{-} \mathcal{J}_{1}^{-} + \mathcal{Q}_{2}^{-} \mathcal{J}_{2}^{-} + \mathcal{Q}_{3}^{-} \mathcal{J}_{3}^{-} \\ \mathcal{Q}_{1}^{+} = [X]^{2}/6 - [Y]^{2}/2 \qquad \mathcal{Q}_{1}^{-} = [X]^{2}/6 - [Y]^{2}/2 \\ \mathcal{Q}_{2}^{+} = [Y]^{2}/6 - [Z]^{2}/2 \qquad \mathcal{Q}_{2}^{-} = [Y]^{2}/6 - [Z]^{2}/2 \\ \mathcal{Q}_{3}^{+} = [Z]^{2}/6 - [X]^{2}/2 \qquad \mathcal{Q}_{3}^{-} = [Z]^{2}/6 - [X]^{2}/2 \\ \end{array}$	$\begin{aligned} \boldsymbol{\mathcal{H}} &= \mathcal{I}_{1}(\mathbf{z}_{2}\text{-}\mathbf{z}_{1}) \\ &+ \mathcal{I}_{2}(\mathbf{z}_{3}\text{-}\mathbf{z}_{2}) \\ &+ \mathcal{I}_{3}(\mathbf{z}_{1}\text{-}\mathbf{z}_{3}) \end{aligned}$

Simple building blocks \Leftrightarrow Many equivalent representations

+ Mass action

(+Nonambiguity)

Upon regularizing structure, **representations become equivalent**, **and new representations become available** Stoichiometric matrix = hypergraph = dynamic equations = Reaction list = characteristic polynomial(s) = Big polynomial = generalized Jacobian = Jacobian for currents = Hamiltonian = ...

lpso facto,

- \rightarrow questions can be reformulated as questions about the object of our choice.
- \rightarrow representations acquire deeper, more regular structure
- \rightarrow we can go back and forth between representations to look for easy insights,

simple(r) proofs

Big polynomial

$$d_t x_k = \frac{\partial^2 \mathbf{B}}{\partial x_k^2}$$

$$\begin{split} \mathcal{B} &= \kappa_1^+ x_0 \left(\frac{x_1^2}{2} + \frac{x_2^2}{2} - \frac{x_0^2}{6} \right) + \kappa_1^- x_1 x_2 \left(\frac{x_0^2}{2} - \frac{x_1^2}{6} - \frac{x_2^2}{6} \right) + \kappa_2^+ x_1 \left(\frac{x_3^2}{2} - \frac{x_1^2}{6} \right) + \kappa_2^- x_3 \left(\frac{x_1^2}{2} - \frac{x_3^2}{6} \right) \\ &+ \kappa_3^+ x_2 \left(\frac{x_4^2}{2} - \frac{x_2^2}{6} \right) + \kappa_3^- x_4 \left(\frac{x_2^2}{2} - \frac{x_4^2}{6} \right) + \kappa_4^+ x_3 x_4 \left(\frac{x_5^2}{2} - \frac{x_3^2}{6} - \frac{x_4^2}{6} \right) + \kappa_4^- x_5 \left(\frac{x_3^2}{2} + \frac{x_4^2}{2} - \frac{x_5^2}{2} \right) \\ &+ \kappa_5^+ x_5 \left(\frac{x_0^2}{2} - \frac{x_5^2}{6} \right) + \kappa_5^- x_0 \left(\frac{x_0^2}{2} - \frac{x_5^2}{6} \right) \end{split}$$

$$d_t x_k = \frac{\partial^2 B}{\partial X_k^2}$$
$$\operatorname{div}(d_t x) = \sum_k \frac{\partial^3 B}{\partial X_k^3} < 0$$

CRN properties that critically rely on divergence-free dynamics are not robust and should not be expected in chemistry (nor ecology)

$$egin{aligned} \mathcal{B} &= \sum_{k=1}^r \mathcal{B}_k = \sum_{k=1}^r \left(Q_k^+ J_k^+ + Q_k^- J_k^-
ight) \ & egin{aligned} & egin{aligned}$$

Lotka-Volterra

oscillates

 $X \rightarrow 2 X, X + Y \rightarrow 2Y,$ $Y \rightarrow \emptyset$ Rock-Paper-Scissers (RPS-3) oscillates $X + Y \rightarrow 2 X, Y + Z \rightarrow 2Y,$ $Z + X \rightarrow 2Z$ (RPS-4) quasi-periodic $X + Y \rightarrow 2 X, Y + Z \rightarrow 2Y,$ $Z + W \rightarrow 2 Z, W + X \rightarrow 2W$

CRN properties that critically rely on divergence-free dynamics are not robust and should not be expected in chemistry

Stable, but not asymptotically stable

Lotka-Volterra oscillates $X \rightarrow 2 X, X + Y \rightarrow 2Y,$ $Y \rightarrow \emptyset$ Rock-Paper-Scissers (RPS-3) oscillates $X + Y \rightarrow 2 X, Y + Z \rightarrow 2Y$ $Z + X \rightarrow 2Z$ (RPS-4) quasi-periodic $X + Y \rightarrow 2 X, Y + Z \rightarrow 2Y$ $Z + W \rightarrow 2 Z, W + X \rightarrow 2W$

Lotka-Volterra Fixed point, extinction $X \rightarrow 2 X$, $X + Y \rightarrow XY \rightarrow 2Y$, $Y \rightarrow \emptyset$ Rock-Paper-Scissers (RPS-3) Fixed point, extinction (RPS-4) Fixed point, extinction

CRN properties that critically rely on divergence-free dynamics are not robust and should not be expected in chemistry

Lotka-Volterra oscillates $X \rightarrow 2 X, X + Y \rightarrow 2Y,$ $Y \rightarrow \emptyset$ Rock-Paper-Scissers (RPS-3) oscillates $X + Y \rightarrow 2 X, Y + Z \rightarrow 2Y$ $Z + X \rightarrow 2Z$ (RPS-4) quasi-periodic $X + Y \rightarrow 2 X, Y + Z \rightarrow 2Y$ $Z + W \rightarrow 2 Z, W + X \rightarrow 2W$

CRN properties that critically rely on divergence-free dynamics are not robust and should not be expected in chemistry (nor ecology)

Jacobian

Jacobian

One can deduce simple rules to construct a characteristic polynomial $P_{\lambda}(J)$ from (hyper)graph, and vice versa.

A factor graph. A factor of coefficients occurs in the characteristic polynomial if it is not forbidden Forbidden: i) nearest neighbors, ii) cycles in factor graph

Jacobian

One can deduce simple rules to construct a characteristic polynomial $P_{\lambda}(J)$ from (hyper)graph, and vice versa.

A factor graph. A factor of coefficients occurs in the characteristic polynomial if it is not forbidden Forbidden: i) nearest neighbors, ii) cycles in factor graph

Jacobian for currents

$$\begin{split} \aleph_{k,j}(\boldsymbol{J}) &= \frac{\partial d_t J_k}{\partial J_j} \\ \\ \hline \boldsymbol{0} & \boldsymbol{0} \\ \hline \boldsymbol{0} \\ d_t x_1 &= -d_t x_2 &= -J_1 \\ d_t J_1 &= \kappa_1^+ d_t x_1 - \kappa_1^- d_t x_2 &= -(\kappa_1^+ + \kappa_1^-)J_1 \\ \hline \boldsymbol{\aleph}_o &= \left(\frac{\partial d_t J_1}{\partial J_1}\right) &= \left(-\kappa_1^+ - \kappa_1^-\right) \\ \hline \boldsymbol{\aleph}_{oo} &= \left(\frac{\partial d_t J_1}{\partial J_1}\right) &= \left(-\kappa_1^+ - \kappa_1^-(x_2 + x_3)\right) \\ \hline \boldsymbol{\aleph}_{oo} &= \left(\frac{\partial d_t J_1}{\partial J_1}\right) &= \left(-\kappa_1^+ - \kappa_1^-(x_2 + x_3)\right) \\ \hline \end{split}$$

Jacobian for currents — Handshake stability

$$\aleph = egin{pmatrix} -k_1^+ - k_1^-(x_1 + x_2) & k_1^- x_2 & k_1^- x_1 & 0 & k_1^+ \ k_2^+ & -k_2^+ - k_2^- & 0 & k_2^- & 0 \ k_3^+ & 0 & -k_3^+ - k_3^- & k_3^- & 0 \ k_3^+ & 0 & -k_3^+ - k_3^- & k_3^- & 0 \ 0 & k_4^+ x_4 & k_4^+ x_3 & -k_4^+(x_3 + x_4) - k_4^- & k_4^- \ k_5^- & 0 & 0 & k_5^+ & -k_5^+ - k_5^- \end{pmatrix}$$

Jacobian for currents — Handshake stability

$$\aleph = egin{pmatrix} -k_1^+ - k_1^-(x_1 + x_2) & k_1^- x_2 & k_1^- x_1 & 0 & k_1^+ \ k_2^+ & -k_2^+ - k_2^- & 0 & k_2^- & 0 \ k_2^+ & -k_2^+ - k_2^- & 0 & k_2^- & 0 \ k_3^+ & 0 & -k_3^+ - k_3^- & k_3^- & 0 \ 0 & k_4^+ x_4 & k_4^+ x_3 & -k_4^+(x_3 + x_4) - k_4^- & k_4^- \ k_5^- & 0 & 0 & k_5^+ & -k_5^+ - k_5^- \end{pmatrix}$$

Jacobian for currents — Handshake stability

If each species in a CRN engages in at most 2 reactions, then the CRN is **handshake stable** i.e. all eigenvalues of jacobian for currents are nonpositive.

Deficiency δ , invariant deficiency δ

$$\delta_{\odot} = c - c_o = c_{oo}$$

Invariant deficiency: # nontrivial cycles (cycles that are not purely unimolecular)

 $\delta=0$ is a well-known guarantee of stability

$$\delta_{\odot} = \mathbf{1}, \delta = \mathbf{1}, s^{(3)} = \mathbf{0}$$

$$\delta_{\odot} = 1, \delta = 0, s^{(3)} = 0$$

Deficiency δ , invariant deficiency δ

$$\delta_{\odot} = c - c_o = c_{oo}$$

$$\delta_{\odot} = \mathbf{1}, \delta = \mathbf{0}, s^{(3)} = \mathbf{0}$$

Invariant deficiency: # nontrivial cycles (cycles that are not purely unimolecular)

 $\delta=0$ is a well-known guarantee of stability

Open question:

To what extent are conclusions based on deficiency robust to regularization?

 $\delta_{\odot} = 1, \delta = 1, s^{(3)} = 0$

Generating robust invariants & CRN index laws

Graph transform	Structural Law	Introduced quantities
	$s - r = \ell_s - c$	s : # species r: # reactions l _s : # conserved quantities c : # cycles
	$s - r = j + r_{00} - \gamma$	j : # disjoint networks r ₀₀ : # bimolecular reactions
	$\frac{SL3}{S-r = \beta - \gamma_{\triangleright} - c_0}$	β : # bilinkage classes $\gamma_{ ho}$: # pointy loops
	$s - r = \psi - r_{00} - c_0$	ψ : # local isomer groups c_0 : # trivial cycles

(hyper)Graph Transform + Fundamental theorem of Linear Algebra ↓ Robust topological properties of systems + Structural laws for chemical networks

How do I know what CRN I'm looking at?

Battleship

Try to fit one specific hypothesis after another.

How do I know what CRN I'm looking at?

Battleship

Try to fit one specific hypothesis after another.

Guess who?

Exponentially narrow down the options

Measurable indices

Guess who? Exponentially narrow down the options

Exponentially narrow down the options by measuring various families of indices characterizing CRN

Measurable indices

CRN		d+	d^	I×
මුලුදු මුලුල දේශ ලංග වුලෙදී දීදී	2	3	3	0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	3	4	1
මදී දේදී	2	4	4	0
<mark>စင်္ဂ</mark> စင်္ဂ စိုင်ဂ စိုင်ဂ	2	4	4	1
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	4	4	2
% % % %	2	4	5	1
مر <mark>م</mark> وه مرموه مرموه	2	4	5	2
000 000	2	4	6	3









### Measurable indices

CRN	d	d+	d^	I×
<mark>ඉලියි විලිං ඉලිං දී</mark> ඉංලං විලේ දී	2	3	3	0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	3	4	1
چو چو	2	4	4	0
<mark>ဓင္လိ ဓင္</mark> ပိဒ္ ခ်င္ပိဒ္ ခ်င္လိ	2	4	4	1
	2	4	4	2
% % % %	2	4	5	1
್ರಿಯ್ಡ್ <mark>ರಿಯ್ಡ್ ರಿಯ್</mark>	2	4	5	2
000 000	2	4	6	3

Guess who? Exponentially narrow down the options

An example of an index, data dimension d

d=1 (isosbestic point*)

 $d = v - \ell$ "# variables - # constraints" Rank estimation of mean-subtracted data

d=3

Many chemical phenomena lower data dimension

(effectively) irreversible collinear reactions

Local isomer equilibria

Fast equilibria + chemostats (e.g. due to phase separation)

Dramatic dimension reduction with nanoscopic phase separation

Dramatic dimension reduction with nanoscopic phase separation

In dynamic combinatorial chemistry, one oftentimes observes <u>very</u> <u>low-dimensional</u> data (d=1,2) in spite of there being many species that can be isolated (e.g. by HPLC-MS)

Chemical reaction networks, two problems

I) How does the structure of a CRN relate to what it can and cannot do?

II) How do I know what CRN I'm looking at*?

Thank you

Martijn van Kuppeveld

Robert Pollice

Daan van de Weem

Hermanslab