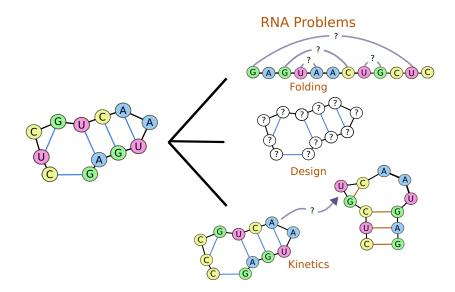
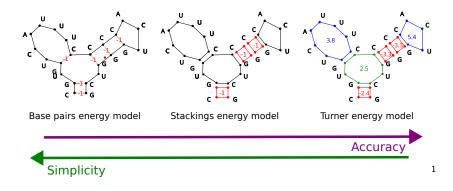
Searching for exact solutions for the inverse folding problem using graphs and parameterization.

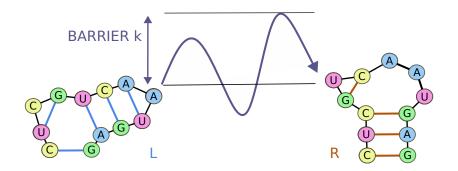

Théo Boury¹, Laurent Bulteau², Yann Ponty¹

1, Laboratoire d'Informatique de l'Ecole Polytechnique (CNRS/LIX; UMR 7161), Institut Polytechnique de Paris, France 2, Laboratoire d'Informatique Gaspard Monge (CNRS/LIGM; UMR 8049), Université Gustave Eiffel, France Rational design targets a desired biological function


Criteria typically split:

- Positive design (\approx Affinity)
- ► Negative design (≈ Specificity)

The RNA molecule: 2D abstraction and problems


Difficulties of this problem depend heavily on the underlying energy model

Stacking model: a reasonable compromise and starting point

¹Adapted from Ronny Lorenz's PhD

Design along a kinetics reconfiguration pathway

Compatible over the pathway

The energy barrier problem

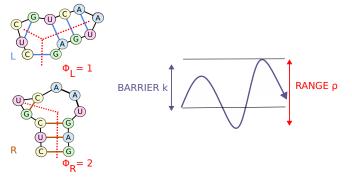
Problem 1 (RNA Energy-Barrier):

Input: Sequence ω ; Secondary structures *L* and *R*; Energy barrier $k \in \mathbb{N}^+$

Output: True if there exists a sequence $S_0 \cdots S_\ell$ of secondary structures such that

•
$$S_0 = L$$
 and $S_\ell = R$;

•
$$E_{\mathcal{M}}(\omega, S_i) - E_{\mathcal{M}}(\omega, L) \leq k, \forall i \in [0, \ell];$$

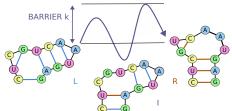

$$\blacktriangleright |S_i \bigtriangleup S_{i+1}| = 1, \forall i \in [0, \ell-1].$$

False otherwise.

- Main An NP-hard problem² (even in base pairs model)!
- Heuristically solved: solely an upper bound³

²Manuch et al, Nature Computing, 2009 ³Dotu et al, NAR, 2010

Solving exactly the energy barrier problem

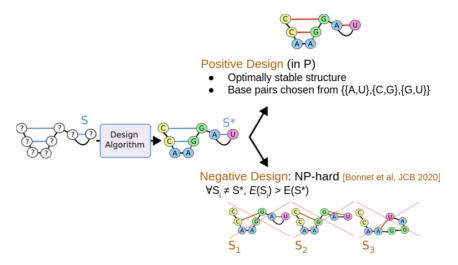

We proposed in the base pairs model: [Boury, Bulteau, Marchand, Ponty, 2023]

- ► XP in Range $(O(n^{2\rho}\sqrt{nm})$ -time $(m = |E|), O(n^2)$ -space)
- XP in Arboricity $\Phi = \min(\Phi_B, \Phi_R)$ ($O(n^{\phi+1})$ -time, $O(n^{\phi})$ -space)

Open question 1:

Extension to a stacking model?

Design along a "direct" pathway


Definition (Direct pathway): A pathway $S_0 \cdots S_\ell$ is dais to be direct iff it contains only base pairs from L and R.

- Barrier does not depend on sequence
- Positive design always possible for two structures [Flamm et al, GCB, 2003]
- \Rightarrow Random generation of RNAs achieving barrier less than k from L to R (if possible) can be performed in linear time

Open question 2:

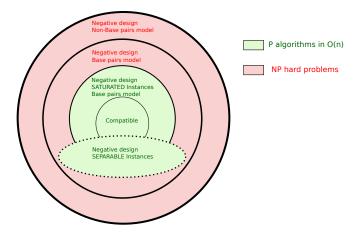
Indirect pathways?

Inverse folding (positive/negative structural design)

Formal definition

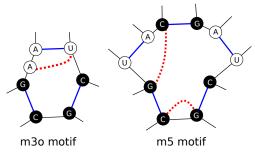
Definition (Design predicates assuming energy model \mathcal{M}): Given a target RNA secondary structure S^* and a length *n*, a sequence $\omega \in \{A, C, G, U\}^n$ can be called a design iff it respects some of the following predicates:

1. Compatible


 $\{\omega.(i), \omega.(j)\} \in \{\{A, U\}, \{G, U\}, \{G, C\}\} \forall (i, j) \in S$

- 2. Positive Design $E_{\mathcal{M}}(\omega', S^*) \ge E_{\mathcal{M}}(\omega, S^*), \forall \omega' \neq \omega$
- 3. Negative Design $E_{\mathcal{M}}(\omega, S) > E_{\mathcal{M}}(\omega, S^{\star}), \forall S \neq S^{\star}$

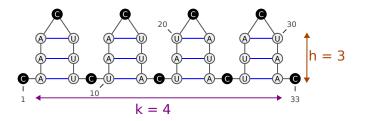
 \blacktriangleright In unweighted models: compatible \rightarrow positive design


Halès et al⁴: what it brought to the table

How to find exact solutions that satisfies the negative design?

⁴Halès et al, Algorithmica, 2017

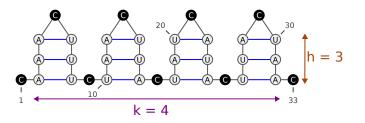
Obvious limits


Limits

- m3o and m5 motifs do not yield a negative design
- ▶ ··· A direct consequence of the base pairs model!

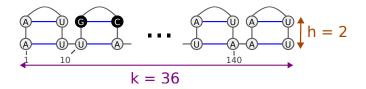
Open question 3: Can we remove this restriction on the number of helices using a stacking energy model?

Possibility of the design with more helices


We work now using the stacking model:

Open question 3: Can we remove this restriction on the number of helices using a stacking energy model?

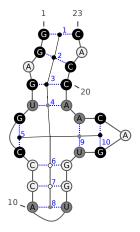
Possibility of the design with more helices


We work now using the stacking model:

Open question 3: Can we remove this restriction on the number of helices using a stacking energy model? **Yes!**

Theorem (Helices of large enough size \rightarrow Designable]): Given a saturated multiloop S of k helices of size h, with unpaired positions between and at extremities of each helix, if $log_2(k) < h$ then the structure is designable.

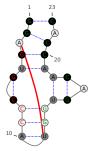
Open question 5: Motif generalization: removing terminal and inbetween nodes? \cdots but we just push back the base pairs bounds



Theorem (Helices of small enough size \rightarrow Non designable): Given a saturated multiloop S of k helices of size h, if $h < log_6(k)$ then the structure is non-designable.

The existence of such a bound means that there is more than a polynomial number of designs that we miss. $^{\rm 5}$

⁵Consequence of Hua Ting's PhD


Halès et al approach⁶

- Base pairs are assigned greedily in a DFS manner
- Obtained sequence is a design but not necessarily negative!

⁶Halès et al, Algorithmica, 2017

The separability condition

Let ω be a sequence compatible with S with A on unpaired regions

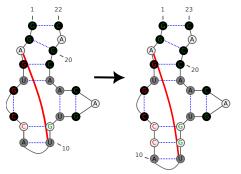
Definition (Separability condition): ω is separated iff any alternative BP $(i, j) \notin S$ segregates different numbers of C and G.

Open question 6:

Separability over a stacking energy model?

What about instances that are not separable?

One can solve the problem on a modified separable instance:


Definition (Disrupted design):

The sequence ω is a disrupted design at distance p iff we can add p nucleotides to ω and p/2 base pairs over them forming S' such as ω' is a design over S'.

We denote the smaller possible perturbation p_{min} .

- ► Linear algorithm achieving a disrupted design at distance p ≤ n (Halès et al)
- At most 1 added BP by helix

Disrupted design proposition

Another algorithm for disrupted negative design:

- XP algorithm finding a disrupted design at distance p_{min}
- Through step-by-step exploration of the possible disruptions

Open question 7:

▶ Find *p_{min}* value in polynomial complexity?

Sampling

Definition (Sampling): Given a set of design predicates P, we say that ω is a uniform design sample if ω satisfies P and $\mathbb{P}(\omega) = \frac{1}{|\{\omega'|\omega' \text{ satisfies } P\}|}$

Perspectives for sampling:

- ► Algorithms to sample given multiple structures is polynomial.
- Algorithms to sample given a sequence and some pairs constraints is FPT in treewidth. ^{7 8}

Open question 8: What about negative design, in particular, how to enumerate exhaustively the alternatives?

⁸Yao et al, RNA Folding - Methods and Protocols, 2022

⁷Hammer et al, BMC Bioinformatics, 2019

Final word ···

As one may notice... I have a lot of "open" questions \cdots ... but I am also "open" to discussions!