Maximum Common Subgraph Finding and Dynamic Programming for Mechanistic Explanation in Mass Spectrometry

Akbar Davoodi* and Daniel Merkle* ${ }^{*}$

Joint work with Christoph Flamm, Marc Hellmuth, Johannes B. S. Petersen, Peter F. Stadler

* Department of Mathematics and Computer Science(IMADA)

University of Southern Denmark(SDU)
${ }^{\dagger}$ Technical Faculty, Bielefeld University
$39^{t h}$ TBI Winterseminar, Bled, Slovenia
Feb 11-16, 2024

Maximum common substructures

Two approaches:

- Graph Alignments
- Graph Products

Definition (Alignment)

An alignment of spaces $\left(X_{\alpha}, \mathscr{S}_{\alpha}\right), \alpha \in S,|S| \geq 1$ is a space (X, \mathscr{S}) such that
(i) there is a monomorphism $\mu_{\alpha}: X_{\alpha} \rightarrow X$ for every $\alpha \in S$;
(ii) for every $x \in X, \mu_{\alpha}^{-1}(x) \neq \emptyset$ for at least one $\alpha \in S$;
(iii) the restriction of $(X, \mathscr{S})\left[\mu_{\alpha}\left(X_{\alpha}\right)\right]$ is isomorphic to $\left(X_{\alpha}, \mathscr{S}_{\alpha}\right)$

Modular product of two graphs

- Cliques in the modular product graph correspond to isomorphisms of induced subgraphs of G and G^{\prime}.
- The maximum common induced subgraph of two graphs corresponds to the maximum clique in their modular product.

What precisely do we require from a common substructure?

Questions

- Which properties need to be preserved for the common substructure?
- Induced subgraph
- Connectivity
- ...
- How can we generalize each of the approaches for multiple graphs?
- Do we require an exact answer, or would an approximate one suffice?

Subgraphs and vertex induced subgraphs

Subgraphs and vertex induced subgraphs

5 vertices and 4 edges

Subgraphs and vertex induced subgraphs

7 vertices and 7 edges

In graph alignments:

Solution: Edge-wise graph alignment:

In graph products:

Definition (Line graph)

Let $G=(V, E)$ be a simple graph. The line graph $L(G)$ is another simple graph. Each vertex of $L(G)$ represents an edge of G and two vertices in $L(G)$ are adjacent iff the corresponding edges are adjacent in G.

From MCS to MCES

G and $G^{\prime} \stackrel{L}{\Longrightarrow} L(G)$ and $L\left(G^{\prime}\right) \underset{\text { algorithm }}{\text { vertex induced }} \operatorname{MCS}\left(L(G), L\left(G^{\prime}\right)\right)$
$\xrightarrow{L^{-1}} \operatorname{MCES}\left(G, G^{\prime}\right)$

Example:

How to find common subgraph of $\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$?
In graph product:

$$
\overbrace{\underbrace{H_{1} \times H_{2}}_{c_{2}} \times H_{3}}^{c_{3}} \times \cdots \times H_{t}
$$

In graph alignment:

Summary

- Both approaches can handle any structural property we wish to preserve for the common substructure.
- In the alignment approach, you cannot guarantee the optimality of the answer, but it is faster.
- In the product approach, you ensure that the answer is optimal, but it is slower in terms of time.
- Depending on the application, one may decide which of them to select.
- In the alignment approach, one has to deal with technical issues like ambiguous sets, whereas this is not the case in the product approach.

Maximum Common Subgraph Finding and Dynamic Programming for Mechanistic Explanation in Mass Spectrometry

Akbar Davoodi ${ }^{1}$, Daniel Merkle ${ }^{2,1}$
${ }^{1}$ University of Southern Denmark
${ }^{2}$ University of Bielefeld

Methodology: Graph Transformations using the Double Pushout Approach

Chemical reactions as mathematical rigorous graph transformations

Atoms have identity, allowing for:

- direct wetlab validation
- atom tracing and isotope labelling experiment design
- automated coarse graining
- interfacing to (semi-empirical) quantum chemistry methods

Generative chemistry

- reaction network as hypergraph
- inference of motifs as integer hyperflows (e.g., autocatalysis)
- causality analysis
- network completion

M/S-detection of isotopologues of metobolites (here: malate)

Sampling cells

Sampling medium

80-100 species

[^0]

MS using Graph Transformation

- Ionization
- Fragmentation

```
targetCompounds = [smiles("N#CCO")]
def hasCharge(g, gs, first):
    return sum(v.charge for v in g.vertices) != 0
strat = (
    ionizationRules
    >> filterSubset(hasCharge)
    >> repeat[4](
        fragmentationRules >> filterSubset(hasCharge)
    )
)
dg = dgRuleComp(inputGraphs, addSubset(targetCompounds) >> strat)
dg.calc()
dg.print()
```


Andersen et al. 2018

Black Boxes

- An overapproximation of a fragmentation graph for mechanistic explanations
(e.g. CFM-ID, MØD, ...)

- creates huge fragmentation DAGs (ML)
- can be used for rules inference
- A (hopefully) trustworthy fragmentation tree
(e.g. SIRIUS, QCxMS, ...)

- no mechanistic explanation

Dynamic Programming

SIRIUS

Map a tree into a DAG, under a certain cost measure

Some numbers

Size of SIRIUS fragmentation trees :

Size of graph transformation DAG (MØD derivation graph):
Number of graph transformation rules:
Succesfull application of graph transformation rules
approx. 1 - 20 vertices
approx. $5000-100.000$ vertices
approx. 10.000
approx. 1\%-2\%
[work in progress]

MCS

- here: one of 10000 rules (bin size 4)
- graph product based
- bin size: upto > 100

DP Results

Approx. 700 SIRIUS trees, how many can be mapped, what is the quality of the mapping? Sorted distribution qualities

Manually designed rule set

CFM-ID - based rule set (inferred)

Results (Examples)

SIRIUS

- robust despite randomization of fragmentaion DAG generation (!) - two ionised compounds for best explanation

Results (Examples)

$M \varnothing D$

Results (Examples)

$M \varnothing D$

SIRIUS

$M \emptyset D$

SIRIUS

Results (Examples)

$M \emptyset D$

SIRIUS

Results (Examples)

$M \emptyset D$

SIRIUS

Potential SIRIUS correction

Blackbox Replacement for SIRIUS

- Use (sampling of) increasing Cayley Trees (instead of SIRIUS fragmentation trees)

Conclusion

- Mechanisitc explanation for MS and MS/MS results

The TACsy project has

- (Overapproximated) rule set inferrence
- Rule set quality / black box quality
- Next steps:
- Robustness
- Isotopes
- Application to lipids (Johannes in TACsy)
- Rules inferrence (shadow size vs \#rules, using progressive "anchored" MCS and ILP)
- Application to metabolic networks (network completion)

- Different black boxes
- Increasing Cayley Trees
novo nordisk fonden

[^0]: Continuous cultivation of an 8 species microbial community is established

