

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Maximum Common Subgraph Finding and Dynamic Programming for Mechanistic Explanation in Mass Spectrometry

Akbar Davoodi* and Daniel Merkle*[†]

Joint work with Christoph Flamm, Marc Hellmuth, Johannes B. S. Petersen, Peter F. Stadler

*Department of Mathematics and Computer Science(IMADA) University of Southern Denmark(SDU)

[†]Technical Faculty, Bielefeld University

39th TBI Winterseminar, Bled, Slovenia Feb 11-16, 2024

Maximum common substructures

Two approaches:

- Graph Alignments
- Graph Products

Definition (Alignment)

An alignment of spaces $(X_{\alpha}, \mathscr{S}_{\alpha})$, $\alpha \in S$, $|S| \geq 1$ is a space (X, \mathscr{S}) such that

- (i) there is a monomorphism $\mu_{\alpha}: X_{\alpha} \to X$ for every $\alpha \in S$;
- (ii) for every $x \in X$, $\mu_{\alpha}^{-1}(x) \neq \emptyset$ for at least one $\alpha \in S$;
- (iii) the restriction of $(X,\mathscr{S})[\mu_{\alpha}(X_{\alpha})]$ is isomorphic to $(X_{\alpha},\mathscr{S}_{\alpha})$

イロト 不得下 イヨト イヨト 二日

Modular product of two graphs

• Cliques in the modular product graph correspond to isomorphisms of induced subgraphs of G and G'.

• The maximum common induced subgraph of two graphs corresponds to the maximum clique in their modular product.

What precisely do we require from a common substructure?

Questions

- Which properties need to be preserved for the common substructure?
 - Induced subgraph
 - Connectivity
 - • •
- How can we generalize each of the approaches for multiple graphs?
- Do we require an exact answer, or would an approximate one suffice?

Subgraphs and vertex induced subgraphs

Subgraphs and vertex induced subgraphs

5 vertices and 4 edges

<ロト < 回ト < 回ト < 回ト < 回ト</p>

6/12

Subgraphs and vertex induced subgraphs

7 vertices and 7 edges

<ロト < 回ト < 回ト < 回ト < 回ト</p>

7/12

In graph alignments:

Solution: Edge-wise graph alignment:

In graph products:

Definition (Line graph)

Let G = (V, E) be a simple graph. The line graph L(G) is another simple graph. Each vertex of L(G) represents an edge of G and two vertices in L(G) are adjacent iff the corresponding edges are adjacent in G.

A. Davoodi & D. Merkle

From MCS to MCES

$$G \text{ and } G' \xrightarrow{L} L(G) \text{ and } L(G') \xrightarrow[algorithm]{\text{vertex induced}} MCS(L(G), L(G'))$$

 $\xrightarrow{L^{-1}} MCES(G, G')$

Example:

A. Davoodi & D. Merkle

How to find common subgraph of $\{H_1, H_2, \ldots, H_t\}$?

In graph product:

$$\underbrace{\underbrace{H_1 \times H_2}_{c_2} \times H_3}_{c_2} \times \cdots \times H_t$$

In graph alignment:

A. Davoodi & D. Merkle

Summary

- Both approaches can handle any structural property we wish to preserve for the common substructure.
- In the alignment approach, you cannot guarantee the optimality of the answer, but it is faster.
- In the product approach, you ensure that the answer is optimal, but it is slower in terms of time.
- Depending on the application, one may decide which of them to select.
- In the alignment approach, one has to deal with technical issues like ambiguous sets, whereas this is not the case in the product approach.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 うの()

Maximum Common Subgraph Finding and Dynamic Programming for Mechanistic Explanation in Mass Spectrometry

Akbar Davoodi¹, Daniel Merkle^{2,1}

¹University of Southern Denmark ²University of Bielefeld

(Joint work with Christoph Flamm, Marc Hellmuth, Johannes Borg Sandberg Petersen, Peter F. Stadler)

Methodology: Graph Transformations using the Double Pushout Approach

Chemical reactions as mathematical rigorous graph transformations

Atoms have identity, allowing for:

- direct wetlab validation
- atom tracing and isotope labelling experiment design
- automated coarse graining
- · interfacing to (semi-empirical) quantum chemistry methods

Generative chemistry

- reaction network as hypergraph
- inference of motifs as integer hyperflows (e.g., autocatalysis)
- · causality analysis
- network completion

Methodology: SIHUMIx and Isotope Tracing

Continuous cultivation of an 8 species microbial community is established

MS using Graph Transformation

- Ionization
- Fragmentation

```
targetCompounds = [smiles("N#CCO")]
def hasCharge(g, gs, first):
   return sum(v.charge for v in g.vertices) != 0
                                                                                                 н,ċ—он
                                                                                              id: 6, m: 31.0184
strat = (
   ionizationRules
   >> filterSubset(hasCharge)
   >> repeat [4](
                                                                                                 id: 2, m: 57.0215
      fragmentationRules >> filterSubset(hasCharge)
   )
dg = dgRuleComp(inputGraphs, addSubset(targetCompounds) >> strat)
dg.calc()
dg.print()
```


Black Boxes

Training Alliance for Computational systems chemistry

- An overapproximation of a fragmentation graph for mechanistic explanations
 - (e.g. CFM-ID, MØD, ...)

- creates huge fragmentation DAGs (ML)
- can be used for rules inference

- A (hopefully) trustworthy fragmentation tree (and more)
 - (e.g. SIRIUS, QCxMS, ...)

• no mechanistic explanation

Dynamic Programming

Map a tree into a DAG, under a certain cost measure

(!)

(!)

Size of SIRIUS fragmentation trees :

approx. 1 – 20 vertices

Size of graph transformation DAG (MØD derivation graph):	approx. 5000 – 100.000 vertices
Number of graph transformation rules:	approx. 10.000
Succesfull application of graph transformation rules	approx. 1% - 2%

[work in progress]

MCS

- here: one of 10000 rules (bin size 4)
- graph product based
- bin size: upto > 100

DP Results

Approx. 700 SIRIUS trees, how many can be mapped, what is the quality of the mapping? Sorted distribution qualities

1.00.80.60.40.40.20.40.20.00.20.00.20.0

Manually designed rule set

CFM-ID – based rule set (inferred)

Bled 2024 10

Blackbox Replacement for SIRIUS

• Use (sampling of) increasing Cayley Trees (instead of SIRIUS fragmentation trees)

- Mechanisitc explanation for MS and MS/MS results
- (Overapproximated) rule set inferrence
- Rule set quality / black box quality
- Next steps:
 - Robustness
 - Isotopes
 - Application to lipids (Johannes in TACsy)
 - Rules inferrence (shadow size vs #rules, using progressive "anchored" MCS and ILP)
 - Application to metabolic networks (network completion)
 - Different black boxes
 - Increasing Cayley Trees

The TACsy project has received funding from the European Union's Horizon 2021 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101072930.

