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The Central Dogma
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Alternative Splicing
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Reality vs Simulation

we simulate what we know
⇔

what we know is based on tools conforming to simulation

But what do we measure? What is our Reality?
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Technical Difficulties... Please Stand by...

Typical technical biases of Illumina based RNA-seq protocols:

Step Influence
PolyA-Selection vs RiboZero 3’ bias, dropout regions

Fragmentation Fragment size distribution, 3’/5’ sampling bias
Size Selection Fragment size distribution, 3’/5’ sampling bias

1st/2nd Strand Priming and Synthesis Hexamer priming bias
Adapter Ligation Adapter Sequences in Reads

PCR GC bias, PCR duplicates, copy errors
Flowcell retention downsampling
Bridge Amplification pre-/post-phasing, copy errors

species specific influences on most of the above
sample handling fragment size distribution, copy errors

Sequence-By-Synthesis read errors, quality scores
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Technical Difficulties... Please Stand by...

Typical post-processing steps with bias:

Step Influence
Quality Trimming/Adapter Trimming over-trimming

Assembly missed genomic duplication, ??
Mapping/(semi) Alignment missed genomic duplications, false splice-site predictions, ???

Quantification ??
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Quantification of single samples

How can we quantify the likelihood that a read originates from an isoform?

Based on:
• de novo assembly
• reference based annotation
• reference annotation

Complications:
• correction of technical biases
• alignment bias
• incomplete/wrong isoform base
• overlapping features
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Distributions...

How do we treat isoform/exon abundances between replicates?

⇒ negative binomial distribution is the “gold standard”

But some still use Poisson distribution

But only for “normal” bulk RNA-seq...
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Distributions...

An excerpt of current single cell models:
Tool Year of Publication Modeled Distribution
ESCO [1] 2020 Gamma-Poisson
hierarchicell [2] 2021 negative binomial
muscat [3] 2020 negative binomial
POWSC [4] 2020 zero-inflated, log-normal Poisson mixture
scDD [5] 2016 Bayesian negative binomial mixture
scDesign2 [6] 2021 negative binomial
SCRIP [7] 2022 Gamma-Poisson
SPARSim [8] 2020 Gamma-multivariate hypergeometric
splatter [9] 2017 Gamma-Poisson
SPsimSeq [10] 2020 log-linear + Gaussian copula
SymSim [11] 2019 Markow-Chain-Monte-Carlo
ZINB-WaVE [12] 2018 zero-inflated negative binomial
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Distributions...

Tools often only validate their approach in a circular fashion...

Common choices are:

• simulate data with own expected distribution
• simulate data with own expected distribution and custom error model
• use pre-existing simulators and their distribution models and error models
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Is there transcriptional noise?

Typically sized RNA-seq experiments miss out significant portions of low
abundant spliceforms ([13], [14]).

This could mostly be noise ([15], [16]):

• un-mature RNA
• spliceosome failure
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Is there transcriptional noise?

Can’t we just look at abundance distributions of the measurements?

No! There is systematic and unsystematic noise:

• spliceosome splice order is not random
• observed maladaptation of the spliceosome

Can’t we disregard low abundant spliceforms?

Maybe?

• rare isoforms have been associated as a key factor in diseases including
cancer

• other studies suggest little correlation of sequencing depth to drawn
biological conclusions [17]
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Three Philosophies...

In the beginning, there was an annotated reference...
And somehow measured feature abundances...

Option A:

• simulate reference as is
• provide tools with partial reference
• systematic reduction for isoform classes possible
. assumption that there is no noise
. assumption that reference is representative
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Three Philosophies...

Option B:

• use exon chain of “dominant” isoform/consensus exons
• generate genes to presumed feature distribution
• provide tools with partial reference
. assumption that there is no noise
. partially artificial gene structures
. assumption that feature distribution is representative
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Three Philosophies...

Option C:

• use exon chain of “dominant” isoform/consensus exons
• generate genes to presumed feature distribution
• add additional noisy transcripts
• provide tools with partial reference of true genes
. partially artificial gene structures
. assumption that feature distribution is representative

B or C may also use artificial distributions.
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Fold change and abundance conundrum

For either option we need to create:

• (realistic) isoforms abundances (with replicates)
• (realistic) fold changes
• reads (with varying technical biases)
• (realistic) size differences between repeats/samples

We may define abundances and fold changes as follows:

• fully mimic a real dataset
• feature estimation to simulate and generate real-like distribution
• fully artificial mixtures

Modeling technical biases further influences simulated counts.
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Annotation conundrum

Most tools will blindly follow a given reference!

We need benchmarks providing:

• full reference
• full reference + noisy transcripts
• partial references
• partial references + (related) noisy transcripts

The reference is relevant for mapping, assembly and quantification.

16



Alignment bias

Simulating counts is not enough.

Simulate read sequences:

• with technical bias
• without technical bias
• without technical bias and perfect alignment
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Explicit Biases of Assembler

Assembler try to maximize conformity to existing annotation
and thereon based simulation.

All competitive general purpose assembler deliberately avoid calling:
• alternative start/end sites
• intron retention
• overlapping “shadow” genes on the opposite strand
• isoforms within introns
• low abundant isoforms in high abundance genes

Common observation: rare splice forms appear in few samples at low abundance
→ multi sample assembler like Taco [18], PsiCLASS [19] or Ryūtō[20] remove
isoforms based on this property
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Summary

Simulated choices have real life consequences.

But does it actually matter for your application?
(Maybe use lab testing wherever you can.)
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