Simulating the Unknown

Thomas Gatter

14.02.2024

Bioinformatics, Leipzig University

Alternative Splicing

we simulate what we know

 \Leftrightarrow

what we know is based on tools conforming to simulation

But what do we measure? What is our Reality?

Typical technical biases of Illumina based RNA-seq protocols:

Step	Influence
PolyA-Selection vs RiboZero	3' bias, dropout regions
Fragmentation	Fragment size distribution, 3'/5' sampling bias
Size Selection	Fragment size distribution, 3'/5' sampling bias
1st/2nd Strand Priming and Synthesis	Hexamer priming bias
Adapter Ligation	Adapter Sequences in Reads
PCR	GC bias, PCR duplicates, copy errors
Flowcell retention	downsampling
Bridge Amplification	pre-/post-phasing, copy errors
species specific influences	on most of the above
sample handling	fragment size distribution, copy errors
Sequence-By-Synthesis	read errors, quality scores

Typical **post-processing** steps with **bias**:

Step	Influence
Quality Trimming/Adapter Trimming	over-trimming
Assembly	missed genomic duplication, ??
Mapping/(semi) Alignment	missed genomic duplications, false splice-site predictions, ???
Quantification	??

How can we quantify the likelihood that a read originates from an isoform?

Based on:

- *de novo* assembly
- \cdot reference based annotation
- \cdot reference annotation

Complications:

- \cdot correction of technical biases
- alignment bias
- incomplete/wrong isoform base
- \cdot overlapping features

How do we treat isoform/exon abundances between replicates?

\Rightarrow negative binomial distribution is the "gold standard"

But some still use Poisson distribution But only for "normal" bulk RNA-seq...

An excerpt of current single cell models:		
Tool	Year of Publication	Modeled Distribution
ESCO [1]	2020	Gamma-Poisson
hierarchicell [2]	2021	negative binomial
muscat [3]	2020	negative binomial
POWSC [4]	2020	zero-inflated, log-normal Poisson mixture
scDD [5]	2016	Bayesian negative binomial mixture
scDesign2 [6]	2021	negative binomial
SCRIP [7]	2022	Gamma-Poisson
SPARSim [8]	2020	Gamma-multivariate hypergeometric
splatter [9]	2017	Gamma-Poisson
SPsimSeq [10]	2020	log-linear + Gaussian copula
SymSim [11]	2019	Markow-Chain-Monte-Carlo
ZINB-WaVE [12]	2018	zero-inflated negative binomial

Are successful of surveyed aingle call medale

Tools often only validate their approach in a circular fashion...

Common choices are:

- \cdot simulate data with own expected distribution
- simulate data with own expected distribution and custom error model
- \cdot use pre-existing simulators and their distribution models and error models

Typically sized RNA-seq experiments miss out significant portions of low abundant spliceforms ([13], [14]).

This could mostly be noise ([15], [16]):

- un-mature RNA
- spliceosome failure

Can't we just look at abundance distributions of the measurements? No! There is systematic and unsystematic noise:

- spliceosome splice order is not random
- observed maladaptation of the spliceosome

Can't we disregard low abundant spliceforms?

Maybe?

- rare isoforms have been associated as a key factor in diseases including cancer
- other studies suggest little correlation of sequencing depth to drawn biological conclusions [17]

In the beginning, there was an annotated reference... And somehow measured feature abundances...

Option A:

- simulate reference as is
- \cdot provide tools with partial reference
- systematic reduction for isoform classes possible
- ▷ assumption that there is no noise
- ▷ assumption that reference is representative

Option B:

- use exon chain of "dominant" isoform/consensus exons
- · generate genes to presumed feature distribution
- provide tools with partial reference
- ▷ assumption that there is no noise
- ▷ partially artificial gene structures
- ▷ assumption that feature distribution is representative

Option C:

- use exon chain of "dominant" isoform/consensus exons
- generate genes to presumed feature distribution
- \cdot add additional noisy transcripts
- \cdot provide tools with partial reference of true genes
- ▷ partially artificial gene structures
- ▷ assumption that feature distribution is representative

B or C may also use artificial distributions.

For either option we need to create:

- (realistic) isoforms abundances (with replicates)
- (realistic) fold changes
- reads (with varying technical biases)
- (realistic) size differences between repeats/samples

We may define abundances and fold changes as follows:

- fully mimic a real dataset
- \cdot feature estimation to simulate and generate real-like distribution
- fully artificial mixtures

Modeling technical biases further influences simulated counts.

Most tools will blindly follow a given reference!

We need benchmarks providing:

- \cdot full reference
- full reference + noisy transcripts
- partial references
- partial references + (related) noisy transcripts

The reference is relevant for mapping, assembly and quantification.

Simulating counts is not enough.

Simulate read sequences:

- \cdot with technical bias
- without technical bias
- $\cdot\,$ without technical bias and perfect alignment

Assembler try to maximize conformity to existing annotation and thereon based simulation.

All competitive general purpose assembler deliberately avoid calling:

- alternative start/end sites
- \cdot intron retention
- \cdot overlapping "shadow" genes on the opposite strand
- isoforms within introns
- \cdot low abundant isoforms in high abundance genes

Common observation: rare splice forms appear in few samples at low abundance \rightarrow multi sample assembler like Taco [18], PsiCLASS [19] or Ryūtō[20] remove isoforms based on this property

Simulated choices have real life consequences. But does it actually matter for your application? (Maybe use lab testing wherever you can.)

Citations i

References

- J. Tian, J. Wang, and K. Roeder, "Esco: Single cell expression simulation incorporating gene co-expression," *Bioinformatics*, vol. 37, no. 16, pp. 2374–2381, 2021.
- [2] K. D. Zimmerman and C. D. Langefeld, "Hierarchicell: An r-package for estimating power for tests of differential expression with single-cell data," *BMC genomics*, vol. 22, no. 1, pp. 1–8, 2021.
- [3] H. L. Crowell, C. Soneson, P.-L. Germain, et al., "Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data," Nature communications, vol. 11, no. 1, p. 6077, 2020.
- [4] K. Su, Z. Wu, and H. Wu, "Simulation, power evaluation and sample size recommendation for single-cell rna-seq," *Bioinformatics*, vol. 36, no. 19, pp. 4860–4868, 2020.
- [5] K. D. Korthauer, L.-F. Chu, M. A. Newton, et al., "A statistical approach for identifying differential distributions in single-cell rna-seq experiments," Genome biology, vol. 17, pp. 1–15, 2016.
- [6] T. Sun, D. Song, W. V. Li, and J. J. Li, "Scdesign2: A transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured," *Genome biology*, vol. 22, no. 1, p. 163, 2021.
- [7] F. Qin, X. Luo, F. Xiao, and G. Cai, "Scrip: An accurate simulator for single-cell rna sequencing data," *Bioinformatics*, vol. 38, no. 5, pp. 1304–1311, 2022.
- [8] G. Baruzzo, I. Patuzzi, and B. Di Camillo, "Sparsim single cell: A count data simulator for scrna-seq data," *Bioinformatics*, vol. 36, no. 5, pp. 1468–1475, 2020.

Citations ii

- [9] L. Zappia, B. Phipson, and A. Oshlack, "Splatter: Simulation of single-cell rna sequencing data," Genome biology, vol. 18, no. 1, p. 174, 2017.
- [10] A. T. Assefa, J. Vandesompele, and O. Thas, "Spsimseq: Semi-parametric simulation of bulk and single-cell rna-sequencing data," *Bioinformatics*, vol. 36, no. 10, pp. 3276–3278, 2020.
- [11] X. Zhang, C. Xu, and N. Yosef, "Simulating multiple faceted variability in single cell rna sequencing," *Nature communications*, vol. 10, no. 1, p. 2611, 2019.
- [12] D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J.-P. Vert, "A general and flexible method for signal extraction from single-cell rna-seq data," *Nature communications*, vol. 9, no. 1, p. 284, 2018.
- [13] R. Sen, G. Doose, and P. F. Stadler, "Rare splice variants in long non-coding RNAs," Non-Coding RNA, vol. 3, no. 3, p. 23, 2017.
- [14] A. Nellore, A. E. Jaffe, J.-P. Fortin, et al., "Human splicing diversity and the extent of unannotated splice junctions across human rna-seq samples on the sequence read archive," Genome biology, vol. 17, no. 1, pp. 1–14, 2016.
- [15] H. Van Bakel, C. Nislow, B. J. Blencowe, and T. R. Hughes, "Most "dark matter" transcripts are associated with known genes," PLoS Biol, vol. 8, no. 5, e1000371, 2010.
- [16] B. Saudemont, A. Popa, J. L. Parmley, et al., "The fitness cost of mis-splicing is the main determinant of alternative splicing patterns," Genome biology, vol. 18, no. 1, pp. 1–15, 2017.
- [17] A. Conesa, P. Madrigal, S. Tarazona, et al., "A survey of best practices for rna-seq data analysis," Genome biology, vol. 17, no. 1, pp. 1–19, 2016.
- [18] Y. S. Niknafs, B. Pandian, H. K. Iyer, A. M. Chinnaiyan, and M. K. Iyer, "Taco produces robust multisample transcriptome assemblies from rna-seq," *Nature methods*, vol. 14, no. 1, pp. 68–70, 2017.
- [19] L. Song, S. Sabunciyan, G. Yang, and L. Florea, "A multi-sample approach increases the accuracy of transcript assembly," Nature communications, vol. 10, no. 1, pp. 1–7, 2019.
- [20] T. Gatter and P. F. Stadler, "Ryūtō: Improved multi-sample transcript assembly for differential transcript expression analysis and more," Bioinformatics, 2021.