Modelling isotope labelling in atom transition networks

Richard Golnik

University of Leipzig

2024/02/12

Introduction & Motivation

Figure: Metabolic development of 2-13C-Glucose via different metabolic pathways.

Metabolic- Reaction - Network

Figure: Schematic depiction of a part of a metabolic network.

Metabolic- Reaction - Network

Figure: Schematic depiction of a part of a metabolic network with established flux.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Figure: Schematic depiction of a part of a metabolic network and an atom-transition network with established flux.

ATN with Transition Probabilities

Figure: Schematic depiction of an ATN with transition probabilities.

Single - Carbon - Atom -Transition Graph

Figure: Schematic depiction of an atom-transition network with transition probabilities.

Definition (Markov Processes and Markov Chains¹) Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (Y, \mathfrak{B}) a measurable space. Let S be the state space with $\Omega = \prod_{i=0}^{n} S$ and T an index set. A stochastic process

$$X: \Omega imes T o Y, t \in T$$

is called Markov Process, if and only if:

$$\mathbb{P}(X_{t_{n+1}}|X_{t_n} = x_n, \dots, X_{t_0} = x_0) = \mathbb{P}(X_{t_{n+1}} = x_{n+1}|X_{t_n} = x_n),$$

$$t_i < t_{i+1}, \forall i \in \{1, \dots, n\}, x_j \in S$$
(1)

which is called the Markov Property.

¹Introduction to stochastic processes, Gregroy F. Lawler, 2006

Markov Chain

Markov Chain

• S : state space, $S = \{C_{3,1}, C_{3,2}, ...\}$

• Transition probabilities: $P \in [0, 1]^{|S| \times |S|}$

Definition (Stochastic Matrix²)

 $P \in [0,1]^{n \times n}$ is called a row-stochastic matrix, if: $\sum_{i=1}^{n} p_{ij} = 1, \forall i \in \{1, \dots, n\}.$

²Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021 (Derived Antiperiod Antiperiod

Markov Chain

S : state space, S = {C_{3,1}, C_{3,2},...}
 Transition probabilities: P ∈ [0, 1]^{|S|×|S|}
 Markov Property:

$$\mathbb{P}(X_{t_{n+1}}|X_{t_n} = x_n, \dots, X_{t_0} = x_0)$$

= $\mathbb{P}(X_{t_{n+1}} = x_{n+1}|X_{t_n} = x_n),$ (2)

$$t_i < t_{i+1}, \forall i \in \{1, \ldots, n\}, x_j \in S$$

Definition (Stochastic Matrix²)

 $P \in [0,1]^{n \times n}$ is called a row-stochastic matrix, if: $\sum_{j=1}^{n} p_{ij} = 1, \forall i \in \{1, \dots, n\}.$

²Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021 (Derived All Strategy Chains for Undergraduates, Ursula Porod, 2021)

Basic computation on Markov Chains

- $\pi^0 \in [0,1]^{1 \times |\mathcal{S}|}$: probability distribution
- Probability of an event $\omega \in \Omega$:

$$\pi_{i}^{1} = \sum_{i=1}^{j} \pi_{j}^{0} \cdot P_{i,j}$$

$$\pi^{1} = \pi^{0} \cdot P$$

$$\pi^{2} = \pi^{1} \cdot P = \pi^{0} \cdot P^{2}$$

$$\vdots$$

$$\pi^{k} = \pi^{k-1} \cdot P = \ldots = \pi^{0} \cdot P^{k}$$
(3)

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Basic computation on Markov Chains

Accumulation of labeled carbon atoms caused by constant influx of labeled material (π⁰):

$$\pi^{\infty} = \pi^{0} \cdot I + \pi^{0} \cdot P + \pi^{0} \cdot P^{2} + \ldots = \sum_{k=0}^{\infty} \pi^{0} \cdot P^{k}$$
(4)

・ロト・日本・ヨト・ヨト・日・ショウ

³Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013

Basic computation on Markov Chains

Accumulation of labeled carbon atoms caused by constant influx of labeled material (π⁰):

$$\pi^{\infty} = \pi^{0} \cdot I + \pi^{0} \cdot P + \pi^{0} \cdot P^{2} + \ldots = \sum_{k=0}^{\infty} \pi^{0} \cdot P^{k}$$
(4)

▶ $\rho(P) \neq 1 \Rightarrow \lim_{n \to \infty} P^n \neq 0 \Rightarrow (4)$ is not convergent³

³Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013

Definition (Transience and Recurrence⁴)

Let $(X_n)_{n\in\mathbb{N}}$ be a Markov chain with state space $\mathcal{S}, \ x\in\mathcal{S}$ and

$$T^{x} = \min\{n \ge 1 : X_n = x\}$$

the first return time. A state x is called:

- recurrent if $\mathbb{P}(T^x < \infty | X_0 = x) = 1$.
- transient if $\mathbb{P}(T^x < \infty | X_0 = x) < 1$.

A Markov chain is recurrent (transient) if all of its states are recurrent (transient).

Proposition (Characterization of Recurrency⁵)

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. If x is recurrent and $x \to y$, then y is also recurrent.

⁵Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021 🛛 🗤 🖘 👘 🖓 🚓 👘 👘 👘 👘

Proposition (Characterization of Recurrency⁵)

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. If x is recurrent and $x \to y$, then y is also recurrent.

⁵Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

Proposition (Characterization of Recurrency⁵)

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. If x is recurrent and $x \to y$, then y is also recurrent.

⁵Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021 🛛 🗤 🖅 🖉 🖉 🖉 🖉 🖉

Proposition (Characterization of Recurrency⁵) Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. If x is recurrent and $x \to y$, then y is also recurrent.

⁵Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021 🛛 🗤 🖬 🖉 🖉 🖉 🖉

Proposition (Characterization of Recurrency⁵) Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. If x is recurrent and $x \to y$, then y is also recurrent.

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

Lemma (Fundamental Matrix⁶)

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and Q the substochastic matrix, representing all transient states as constructed above, then the matrix

$$V = \sum_{n=0}^{\infty} Q^n$$

is called the **fundamental matrix** of the Markov chain and is given by: $V = (I - Q)^{-1}$

$$\pi^{\infty} = \pi^{0} \cdot \sum_{n=0}^{\infty} \mathcal{Q}^{n} = \pi^{0} (I - \mathcal{Q})^{-1}$$

⁶Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

◆□ > ◆□ > ◆ □ > ● □ >

> The quantity of labeled carbon atoms can be computed recursively via

$$n_i^{t+1} = n_i^t - \mathsf{Efflux} + \mathsf{Influx}$$

$$= n_i^t - n_i^t \cdot \frac{f_i}{r_i} + \sum_{j=1}^m n_j^t \cdot \frac{f_j}{r_j} \cdot q_{ji} + \pi_i^0$$
⁽⁵⁾

> The quantity of labeled carbon atoms can be computed recursively via

$$n_i^{t+1} = n_i^t - \mathsf{Efflux} + \mathsf{Influx}$$

$$= n_{i}^{t} - n_{i}^{t} \cdot \frac{f_{i}}{r_{i}} + \sum_{j=1}^{m} n_{j}^{t} \cdot \frac{f_{j}}{r_{j}} \cdot q_{ji} + \pi_{i}^{0}$$
⁽⁵⁾

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

With f_i and r_i being the outflux and reservoir of a compound, respectively, we define:

$$C = \begin{pmatrix} \frac{f_1}{r_1} & 0 & \dots & 0 \\ 0 & \frac{f_2}{r_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{f_m}{r_m} \end{pmatrix}$$

> The quantity of labeled carbon atoms can be computed recursively via

$$n_i^{t+1} = n_i^t - \text{Efflux} + \text{Influx}$$

$$= n_i^t - \frac{f_i}{r_i} \cdot n_i^t + \sum_{j=1}^m \frac{f_j}{r_j} \cdot n_j^t \cdot q_{ji} + \pi_i^0$$
(6)

$$c_{ij} = n_i^t - n_i^t \cdot c_{ii} + \sum_{j=1}^m c_{jj} \cdot n_j^t \cdot q_{ji} + \pi_i^0$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

> The quantity of labeled carbon atoms can be computed recursively via

$$n_i^{t+1} = n_i^t - \mathsf{Efflux} + \mathsf{Influx}$$

$$= n_i^t - \frac{f_i}{r_i} \cdot n_i^t + \sum_{j=1}^m \frac{f_j}{r_j} \cdot n_j^t \cdot q_{ji} + \pi_i^0$$
(6)

$$= n_i^t - n_i^t \cdot c_{ii} + \sum_{j=1}^m c_{jj} \cdot n_j^t \cdot q_{ji} + \pi_i^0$$

► Yielding:

$$n^{t+1} = n^t - n^t \cdot C + n^t \cdot C \cdot Q + \pi^0$$

= $n^t \cdot (I - C + C \cdot Q)) + \pi^0$ (7)
= $n^t \cdot (I + C \cdot (Q - I)) + \pi^0 = n^t \cdot \mathcal{M} + \pi^0$

By induction we obtain

$$n^{t+1} = n^t \cdot \mathcal{M} + \pi^0$$

= $(n^{t-1} \cdot \mathcal{M} + \pi^0) \cdot \mathcal{M} + \pi^0$
= $n^{t-1} \cdot \mathcal{M}^2 + \pi^0 \cdot (I + \mathcal{M})$
:
= $\pi^0 \cdot \mathcal{M}^{t+1} + \sum_{k=0}^t \pi^0 \cdot \mathcal{M}^k$
= $\pi^0 \cdot \sum_{k=0}^{t+1} \mathcal{M}^k \xrightarrow{t \to \infty} ???$

(8)

Lemma

 \mathcal{M}_{r} as constructed above, is substochastic and transient. Moreover, the stable reservoir solution can be calculated directly, via:

$$\pi^{\infty} = \pi^{0} \cdot \sum_{k=0}^{\infty} \mathcal{M}^{k} = \pi^{0} (I - \mathcal{M})^{-1} = \pi^{0} \cdot (I - \mathcal{Q})^{-1} \cdot C^{-1}$$

Proof: With $\mathcal{M} = I + C \cdot (\mathcal{Q} - I)$ it follows:

$$\pi^{0} \cdot (I - \mathcal{M})^{-1} \cdot C = \pi^{0} \cdot (I - (I + C \cdot (\mathcal{Q} - I)))^{-1} \cdot C$$
$$= \pi^{0} \cdot (C \cdot (I - \mathcal{Q}))^{-1} \cdot C$$
$$= \pi^{0} \cdot (I - \mathcal{Q})^{-1} \cdot C^{-1} \cdot C$$
$$= \pi^{0} \cdot (I - \mathcal{Q})^{-1}$$
(9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ⊙ へ ⊙

Solutions at particular timepoints:
$$\pi^t = \pi^0 \cdot \sum_{k=n}^t Q^n$$

<□> <0</p>

- Solutions at particular timepoints: $\pi^t = \pi^0 \cdot \sum_{k=n}^t Q^n$
- ▶ Stable solution (without reservoir): $\pi^{\infty} = \pi^{0} \cdot (I Q)^{-1}$

- Solutions at particular timepoints: $\pi^t = \pi^0 \cdot \sum_{k=n}^t Q^n$
- ▶ Stable solution (without reservoir): $\pi^{\infty} = \pi^{0} \cdot (I Q)^{-1}$
- Reservoir solutions at particular timepoints: $\pi^t = \pi^0 \cdot \sum_{k=n}^t \mathcal{M}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Solutions at particular timepoints: $\pi^t = \pi^0 \cdot \sum_{k=n}^t Q^n$
- ▶ Stable solution (without reservoir): $\pi^{\infty} = \pi^{0} \cdot (I Q)^{-1}$
- Reservoir solutions at particular timepoints: $\pi^t = \pi^0 \cdot \sum_{k=n}^t \mathcal{M}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▶ Stable reservoir solution: $\pi^{\infty} = \pi^{0} \cdot (I - Q)^{-1} \cdot C^{-1}$

Outlook

- Stable and timepoint isotopomer solution
- ► ITN Isotopomer Transition Graph
- Modelling atom solution with continuous Markov chains[1.0em]
Acknowledgement

- Peter F. Stadler
- Thomas Gatter
- Nora Beier

UNIVERSITÄT LEIPZIG

Thank you.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Algebras and σ -Algebras

Definition (Algebra and σ -Algebra)

Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω . A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

Algebras and $\sigma\textsc{-Algebras}$

Definition (Algebra and σ -Algebra)

Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω . A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\blacktriangleright \emptyset \in \mathfrak{A}$

Algebras and $\sigma\textsc{-Algebras}$

Definition (Algebra and σ -Algebra)

Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω . A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\triangleright \ \emptyset \in \mathfrak{A}$

$$\blacktriangleright A \in \mathfrak{A} \Rightarrow \Omega \setminus A \in \mathfrak{A}$$

Algebras and σ -Algebras

Definition (Algebra and σ -Algebra)

Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω . A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\begin{split} & \emptyset \in \mathfrak{A} \\ & \blacktriangleright \ A \in \mathfrak{A} \Rightarrow \Omega \setminus A \in \mathfrak{A} \\ & \blacktriangleright \ A_1, \dots, A_n \in \mathfrak{A} \Rightarrow \bigcup_{k=1}^n A_k \in \mathfrak{A} \end{split}$$

Algebras and σ -Algebras

Definition (Algebra and σ -Algebra)

Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω . A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

$$\blacktriangleright \ \emptyset \in \mathfrak{A}$$

$$A \in \mathfrak{A} \Rightarrow \Omega \setminus A \in \mathfrak{A}$$
$$A_1, \dots, A_n \in \mathfrak{A} \Rightarrow \bigcup_{k=1}^n A_k \in \mathfrak{A}$$

 \mathfrak{A} is called a σ -Algebra if additionally:

$$\blacktriangleright A_n \in \mathfrak{A}, n \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathfrak{A}$$

Measurable spaces and measures

Definition (Measurable space)

Let $\Omega \neq \emptyset, \mathfrak{P}(\Omega)$ the power-set on Ω and $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ a σ -Algebra on Ω . Then the tuple (Ω, \mathfrak{A}) is called a measurable space

Definition (Measure and probability measure)

Let (Ω, \mathfrak{A}) be a measurable space. A function $\mu : \mathfrak{A} \to [0, \infty]$ and $\mathbb{P} : \mathfrak{A} \to [0, 1]$ is called a measure and a probability measure, respectively, if the following holds

$$\blacktriangleright \ \mu(\emptyset) = 0, \mathbb{P}(\emptyset) = 0$$

▶ μ , \mathbb{P} are σ -additive, i. e. for $A_n \in \mathfrak{A}, A_i \cap A_j = \emptyset, \forall i \neq j$ the following holds:

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mu(A_n) \text{ and } \mathbb{P}\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

• $\mathbb{P}(\Omega) = 1$ $(\Omega, \mathfrak{A}, \mu)$ and $(\Omega, \mathfrak{A}, \mathbb{P})$ are called a measure space and probability space, respectively.

Measurability and random variables

Definition (Measurability)

Let $(X, \mathfrak{A}), (Y, \mathfrak{B})$ measurable spaces. A function $f : X \to Y$ is called $\mathfrak{A} - \mathfrak{B}$ measurable, if:

$$\{x\in X\mid f(x)\in B\}=:f^{-1}(B)\in \mathfrak{A}$$

Definition (Random variable)

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (Σ, \mathfrak{B}) a measurable space. A $\mathfrak{A} - \mathfrak{B}$ -measurable function:

$$f:\Omega \to \Sigma$$

is called Σ -random variable on Ω or just random variable.

Stochastic Process and Markov Process

Definition (Stochastic process)

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space, (Y, \mathfrak{B}) a measurable space and T an index set. A stochastic process X is a collection of random variables: $X_t : \Omega \to Y, t \in T$, i. e. a map:

$$X:\Omega imes extsf{T} o Y, \omega \mapsto X(\omega)$$

Definition (Markov process)

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (Y, \mathfrak{B}) a measurable space. Let S be the state space with $\Omega = S^{n+1}$ and T an index set. A stochastic process $X : \Omega \times T \to Y, t \in T$ is called Markov Process, if and only if:

$$P(X_{t_{n+1}|X_{t_n}=x_n,...,X_{t_0}=x_0})=\mathbb{P}(X_{t_{n+1}=c_{n+1}|X_{t_n}=x_n}),$$

which is called the Markov Property.

Markov Chains

Lemma

Consider $S \neq \emptyset$ be a discrete (finite or countably infinite) set, named *state space*, with $\pi^0 \in [0,1]^{1 \times |S|}$, being a probability distribution, meaning $\sum_{i=0}^{n} \pi^0(x_i) = 1$, and $\Omega = S^{n+1}$. Furthermore, let $\mathfrak{A} \subseteq \Omega$ be a σ - Algebra on Ω as well as:

$$p: S \times S \rightarrow [0,1] ext{ with } \sum_{x_j \in S} p(x_i,x_j) = 1, orall x_i \in S.$$

Then the function:

$$\mathbb{P}:\mathfrak{A}\to [0,1], \mathbb{P}(A) = \begin{cases} 0 & \text{if } A = \emptyset\\ \sum_{\omega \in A} \pi^0(x_0) \cdot p(x_0, x_1) \cdot \ldots \cdot p(x_{n-1}, x_n) & \text{else} \end{cases}$$

is a probability measure on \mathfrak{A} , i. e. $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ is a probability space.

Proof of the Lemma $\mathcal{P}: \Omega \to [0, 1], \mathcal{P}(\omega) = \pi^0(x_o) \cdot (x_0, x_1) \cdot \ldots \cdot (x_{n-1}, x_n)$ yields: $\mathbb{P}: \mathfrak{A} \to [0, 1], \mathbb{P}(A) = \begin{cases} 0 & \text{if } \omega = \emptyset \\ \sum_{\omega \in A} \mathcal{P}(\omega) & \text{else} \end{cases}$

1. $\mathbb{P}(\emptyset) = 0$, nach Definition

Proof of the Lemma

$$\begin{split} \mathcal{P}: \Omega \to [0,1], \mathcal{P}(\omega) &= \pi^0(x_o) \cdot (x_0, x_1) \cdot \ldots \cdot (x_{n-1}, x_n) \text{ yields:} \\ \mathbb{P}: \mathfrak{A} \to [0,1], \mathbb{P}(\mathcal{A}) &= \begin{cases} 0 & \text{if } \omega = \emptyset \\ \\ \sum_{\omega \in \mathcal{A}} \mathcal{P}(\omega) & \text{else} \end{cases} \end{split}$$

- 1. $\mathbb{P}(\emptyset) = 0$, nach Definition
- 2. σ -Additivität: Seien $A_n \in \mathfrak{A}, n \in \mathbb{N}$ beliebig, sodass $A_i \cap A_j = \emptyset, \forall i \neq j$. Dann gilt:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{\omega\in\bigcup_{n=1}^{\infty}A_{n}}\mathcal{P}(\omega)\stackrel{A_{i}\cap A_{j}=\emptyset}{=}\sum_{n=1}^{\infty}\sum_{\omega\in A_{n}}\mathcal{P}(\omega)\stackrel{\text{Def. }\mathbb{P}}{=}\sum_{n=1}^{\infty}\mathbb{P}(A_{n})$$

Proof of the Lemma $\mathcal{P}: \Omega \to [0, 1], \mathcal{P}(\omega) = \pi^0(x_0) \cdot (x_0, x_1) \cdot \ldots \cdot (x_{n-1}, x_n)$ yields: $\mathbb{P}:\mathfrak{A}\to [0,1], \mathbb{P}(A) = \begin{cases} 0 & \text{if } \omega = \emptyset \\ \sum_{\omega \in A} \mathcal{P}(\omega) & \text{else} \end{cases}$ 3. $\mathbb{P}(\Omega) = 1:$ $\mathbb{P}(\Omega) = \sum \mathcal{P}(\omega) = \sum \pi^0(x_0) \cdot p(x_0, x_1) \cdot \ldots \cdot p(x_{n-1}, x_n)$ $\omega \in \Omega$ $=\sum_{x_{i_n}\in S}\pi^0(x^{i_0})\sum_{x_{i_n}\in S}p(x^{i_0},x^{i_1})\ \ldots\sum_{x_{i_{n-1}}\in S}p(x^{i_{n-1}},x^{i_n})$ (10) $= \sum_{x_{i_0} \in S} \pi^0(x^{i_0}) \sum_{x_{i_1} \in S} p(x^{i_0}, x^{i_1}) \dots \sum_{x_{i_n-2} \in S} p(x^{i_{n-2}}, x^{i_{n-1}}) \cdot 1$ $= \ldots = \sum \pi^0(x^{i_0}) \cdot 1 = 1$ $x_{i_0} \in S$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Proposition

Proposition (Markov Property)

Let $(\Omega, \mathfrak{P}(\Omega), \mathbb{P})$ be the probability space as defined above and $(X_k)_{0 \le k \le n}$ the random vector whose components are the coordinate random variables as defined above. Then for all $0 \le i \le n-1$ and for all $x_0, x_1, ..., x_{i+1} \in S$:

$$\mathbb{P}(X_{i+1}|X_0 = x_0, \dots, x_i = x_i) = \mathbb{P}(X_{i+1} = x_i) = p(x_i, x_{i+1})$$

Proof: By definition we have:

$$\mathbb{P}(X_{i+1}|X_0 = x_0, \dots, x_i = x_i) = \frac{\mathbb{P}(X_0 = x_0, \dots, X_{i+1}) = x_{i+1}}{\mathbb{P}(X_0 = x_0, \dots, X_i = x_i)}$$

$$= \frac{\pi(x_0) \cdot p(x_0, x_1) \dots p(x_{i-1}, x_i) \cdot p(x_i, x_{i+1})}{\pi(x_0) \cdot p(x_0, x_1) \dots p(x_{i-1}, x_i)} = p(x_i, x_{i+1})$$
(11)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Additionally we let:
$$\omega' = \{x_i\} \times \omega = (\omega, x_i), \forall \omega \in \prod_{j=0}^{i-1} S$$
 and obtain:

$$\mathbb{P}(X_{i+1} = x_{i+1} | X_i = x_i) = \frac{\mathbb{P}(X_i x_i, X_{i+1} = x_{i+1})}{\mathbb{P}(X_i = x_i)}$$

$$= \frac{\sum_{\omega \in S^{i-1}} \mathcal{P}(\omega') \cdot p(x_i, x_{i+1})}{\mathbb{P}(X_i = x_i)}$$

$$= \frac{\mathbb{P}(X_i = x_i) \cdot p(x_i, x_{i+1})}{\mathbb{P}(X_i = x_i)} = p(x_i, x_{i+1})$$
(12)

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Homogenous Markov chains and stochastic matrices

Definition (Homogenous Markov Chain)

We call $(X_k)_{0 \le k \le n}$ constructed above a homogeneous Markov chain of length *n* with state space *S*, one-step transition probabilities $P_{xy}, x, y \in S$, and initial distribution π^0 .

Definition (Stochastic Matrix)

A matrix $P \in [0,1]^{n \times n}$ is called a **row-stochastic matrix**, if:

$$\sum_{j=1}^n p_{ij} = 1, \forall i \in \{1, \dots, d\}$$

Irreducibility of Markov Chains

Definition (Irreducibility)

Let $(X_k)_{0 \le k \le n}$ be a Markov chain with state space S and $x, y \in S$.

- ▶ x leads to y, denoted by $x \to y$, if there exists $n \ge 1$ such that $(P^n)_{xy} > 0$.
- ▶ x and y communicate with each other, denoted by $x \leftrightarrow y$, if and only if $x \rightarrow y$ and $y \Rightarrow x$.
- A Markov chain is irreducible, if for all x, y ∈ S, we have x → y. Otherwise, we say the Markov chain is reducible.

Lemma (Communication is an equivalence relation)

The relation \leftrightarrow as defined above, is an equivalence relation. Proof:

- ▶ a and b follow directly from the definition.
- $c: \text{Let } x, y, z \in S \text{ with } x \leftrightarrow y \text{ and } y \leftrightarrow z.$ Then there exists k, l, n, m with $(P)_{(xy)}^{l} > 0, (P)_{(yz)}^{k} > 0, (P)_{(yz)}^{m} > 0, (P)_{(yz)}^{l} > 0, (P)_{(yz)}^{l} > 0$

Lemma (Expected value for visits)

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. Then for $k \geq 1$:

$$\mathbb{P}(V^{y} \geq k | X = x) = f_{xy} f_{y} y^{k-1}$$

Proof:

$$\mathbb{P}(V^{y} \ge k | X_{0} = x) = \mathbb{P}(V^{y} = 1 | X_{0} = x) \cdot \mathbb{P}(V^{y} \ge (k-1) | X_{0} = y)$$
$$= \mathbb{P}(T^{y} < \infty | X_{0} = x) \cdot \mathbb{P}(T^{y} < \infty | X_{0} = y)^{k-1}$$
$$= f_{xy} \cdot f_{yy}^{k-1}$$
(13)

Theorem

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S. a If $y \in S$ is recurrent, then

$$\mathbb{P}(V^{y} = \infty | X_{0} = y) = 1$$

and hence

$$E^{y}(V^{y}) = \infty$$

Furthermore, $\mathbb{P}(V^y = \infty | X_0 = x) = f_{xy} \forall x \in \mathcal{S}.$

b If y is transient, then

$$\mathbb{P}(V^{y} < \infty | X_{0} = x) = 1$$

and

$$E_x(V^y) = \frac{f_{xy}}{1 - f_{yy}} < \infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

for all $x \in S$.

Proof of the Theorem (continued)

By the previous lemma $\mathbb{P}(V^y \ge k | X_0 = x) = f_{xy} \cdot f_{yy}^{k-1}$. If y recurrent $f_{yy} = \mathbb{P}(T^x < \infty | X_0 = y) = 1$ by definition. Then: $\mathbb{P}(V^{y} = \infty | X_{0} = y) = \lim_{k \to \infty} \mathbb{P}(V^{y} \ge k | X_{0} = y)$ $=\lim_{k\to\infty}f_{xy}\cdot f_{yy}^{k-1}$ $=\lim_{k\to\infty}f_{xy}\cdot 1$ (14) $=\lim_{k\to\infty}\mathbb{P}(Ty<\infty|X_0=x)$ $=\mathbb{P}(T_V < \infty | X_0 = x) = 1$ $\Rightarrow f_{xv} > 0 \Rightarrow \mathbb{E}(V^{y}) = \infty$

◆□ > ◆母 > ◆母 > ◆母 > → 日 > ◆ ○ >

Proof of the Theorem (continued)

If y is transient, so
$$f_{yy} = \mathbb{P}(Ty < \infty | X0 = x) < 1$$
. Then we obtain:

$$\mathbb{P}(V^{y} = \infty | X_{0} = y) = \lim_{k \to \infty} \mathbb{P}(V^{y} \ge k | X_{0} = y)$$

$$= \lim_{k \to \infty} f_{xy} \cdot f_{yy}^{k-1} = 0$$

$$\Rightarrow \mathbb{P}(V^{y} < \infty | X_{0} = x) = 1 - \mathbb{P}(V^{y} = \infty | X_{0} = y) = 1$$
(15)
Furthermore : $E_{x}(V^{y}) = \sum_{k=1}^{\infty} \mathbb{P}(V^{y} \ge k) = \sum_{k=1}^{\infty} f_{xy} \cdot f_{yy}^{k-1}$

$$= f_{xy} \cdot \sum_{k=0}^{\infty} f_{yy}^{k} = \frac{f_{xy}}{1 - f_{yy}} < \infty$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q @

Corollary

Corollary (Convergence of transient states)

Let $(X_n)_{n\geq 0}$ a Markov chain with state space S. If $y \in S$ is transient, it holds:

$$\lim_{n\to\infty}(P^n)_{xy}=0,\forall x\in S$$

Proof: Let
$$\mathbb{1}_{y}(z) = \begin{cases} 1 & \text{if } y = z \\ 0 & \text{else} \end{cases}$$
. Since $V^{Y} = \sum_{n=1}^{\infty} \mathbb{1}_{y}(X_{n})$ we obtain with the

Monotone Convergence Theorem:

$$\mathbb{E}_{x}(V^{y}) = \mathbb{E}\left(\sum_{k=1}^{\infty} \mathbb{1}_{y}(X_{n})\right) \stackrel{MCT}{=} \sum_{n=1}^{\infty} \mathbb{E}(\mathbb{1}_{y}(X_{n})) = \sum_{n=1}^{\infty} \mathbb{P}(X = y | X_{0} = x)$$
(16)

$$=\sum_{n=1}^{\infty} (P^n)_{xy} < \infty \Rightarrow \lim_{n \to \infty} (P^n)_{xy} = 0, \forall x \in \mathcal{S}$$

うせん 前 ふばやふばやふむやる

Monotone Convergence Theorem

Theorem (Monotone Convergence Theorem)

Let $(X_n)_{n\geq 0}$ be a sequence of nonnegative random variables and X a (not necessarily finite) random variable with

$$\lim_{n \to \infty} X_n = X \qquad almost \ surely$$

lf

$$0 \le X_0 \le X_1 \le X_2 \le \dots$$
 almost surely

then

$$\lim_{n\to\infty}\mathbb{E}(X_n)=\mathbb{E}(X)$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Definition

A square matrix $P \in [0,1]^{n \times n}$ is called row substochastic, if:

$$\sum_{j=1}^n p_{ij} = 1, orall i \in \{1, \dots, n\}$$

 and

$$\exists k \in \{1,\ldots,n\} : \sum_{j=1}^n p_{kj} < 1$$

くしゃ 本語 * 本語 * 本語 * うらの

Definition

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and Q the substochastic matrix, representing all transient states as constructed above, then the matrix

$$V = \sum_{n=0}^{\infty} Q^n$$

is called the **fundamental matrix** of the Markov chain.

Lemma

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and V the fundamental matrix of the Markov chain. Then:

$$V = (I - Q)^{-1}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Proof of the Lemma

Proof:
$$(I - Q) \cdot \sum_{k=0}^{n} Q^{k} = \sum_{k=0}^{n} Q^{k} - \sum_{k=0}^{n+1} Q^{k} = \sum_{k=0}^{n} Q^{k} (I - Q), \forall n \in \mathbb{N}$$

Since,
$$\sum_{k=0}^{\infty} Q^k$$
 exists, we obtain:

$$(I - Q) \cdot V = (I - Q) \cdot \lim_{n \to \infty} \sum_{k=0}^{n} Q^{k} = \lim_{n \to \infty} (I - Q) \cdot \sum_{k=0}^{n} Q^{k}$$
$$= \lim_{n \to \infty} \left(\left(\sum_{k=0}^{n} Q^{k} \right) \cdot (I - Q) \right) = \left(\lim_{n \to \infty} \sum_{k=0}^{n} Q^{k} \right) \cdot (I - Q)$$
$$= \left(\sum_{k=0}^{\infty} Q^{k} \right) \cdot (I - Q) = V \cdot (I - Q)$$
$$\Rightarrow V(I - Q) = (I - Q) \cdot V = I \Rightarrow V = (I - Q)^{-1}$$
(17)

Proposition

Let $(X_n)_{n\geq 0}$ be a Markov chain with state space S and $x, y \in S$. If x is recurrent and $x \to y$, then

y is also recurrent, and

▶
$$y \rightarrow x$$
, and $f_{xy} = f_{yx} = 1$

Proof: Assume $x \neq y$. Since $x \to y$, there exists a $k \ge 1$ such that $(P^k)_{xy} > 0$. If we had $f_{yx} < 1$, then with probability $(1 - f_{yx}) > 0$, the Markov chain, once in state y, would never visit x at any future time. It follows that:

$$\mathbb{P}(T^x = \infty | X = x) = (1 - f_{xx}) \geq Pk(1 - f_{yx}) > 0$$

However, since x is recurrent, $f_{xx} = 1$, and so it must be that $f_{yx} = 1$. In particular, $y \to x$.

Proof continued

Since $y \to x$, there exists an $l \ge 1$ such that $P'_{xy} > 0$. We have:

$$\mathbb{E}(V^{y}) = \sum_{n=1}^{\infty} (P^{n})_{yy} \ge \sum_{m=1}^{\infty} (P^{l})_{yx} \cdot (P^{m})_{xx} \cdot (P^{k})_{yx} = (P^{l})_{yx} \cdot (P^{k})_{yx} \cdot \sum_{m=1}^{\infty} (P^{m})_{xx} = \infty$$

and thus:

$$\mathbb{E}_{y}(V^{y}) = \infty$$

which implies that y is recurrent by Proposition 1.8.3. Switching the roles of x and y in the argument, yields $f_{xy} = 1$. This completes the proof.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Model atom transitions as a discrete-time markov - chain (DTMC)

 $(X_n)_{n\in\mathbb{N}}=(X_1,X_2,\ldots)$

Methodology

Model atom transitions as a discrete-time markov - chain (DTMC)

$$(X_n)_{n\in\mathbb{N}}=(X_1,X_2,\ldots)$$

$$(T)_{ij} = \Pr(X_{n+1} = i | X_n = j)$$

Methodology

Model atom transitions as a discrete-time markov - chain (DTMC)

$$(X_n)_{n\in\mathbb{N}}=(X_1,X_2,\ldots)$$

$$(T)_{ij} = \Pr(X_{n+1} = i | X_n = j)$$

Use mathematical tool box provided by markov - chains

Classification of Markov Processes

Time space	State Space	
	Discrete	Continuous
Discrete	Discrete-Time Markov Chain (DTMC)	Discrete-time Markov Process (DTMP)
Continuous	Continuous-Time Markov Chain (CTMC)	Continuous-time Markov Process (CTMP)

Discrete-Time Markov Chain

Acknowledgement

- Peter F. Stadler
- Thomas Gatter
- Nora Beier

UNIVERSITÄT LEIPZIG
Thank you for your attention.

Bibliography

Claire L. Boulangé, Ana Luisa Neves, Julien Chilloux, Jeremy K. Nicholson, and Marc-Emmanuel Dumas. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. *Genome Medicine*, 8(1):42, December 2016.

