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Introduction & Motivation

Figure: Metabolic development of 2-13C-Glucose via different metabolic pathways.



Methodology

Figure: Schematic depiction of a part of a metabolic network.



Methodology

Figure: Schematic depiction of a part of a metabolic network with established flux.



Methodology

Figure: Schematic depiction of a part of a metabolic network and an atom-transition network with established

flux.



Methodology

Figure: Schematic depiction of an ATN with transition probabilities.



Methodology

Figure: Schematic depiction of an atom-transition network with transition probabilities.



Definition (Markov Processes and Markov Chains1)

Let (Ω,A,P) be a probability space and (Y ,B) a measurable space. Let S be the

state space with Ω =
n∏

i=0
S and T an index set. A stochastic process

X : Ω× T → Y , t ∈ T

is called Markov Process, if and only if:

P(Xtn+1 |Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+1 = xn+1|Xtn = xn),

ti < ti+1, ∀i ∈ {1, . . . , n}, xj ∈ S
(1)

which is called the Markov Property.

1Introduction to stochastic processes, Gregroy F. Lawler, 2006



Markov Chain

I S : state space, S = {C3,1,C3,2, . . .}

I Transition probabilities: P ∈ [0, 1]|S|×|S|

I Markov Property:

P(Xtn+1 |Xtn = xn, . . . ,Xt0 = x0)

= P(Xtn+1 = xn+1|Xtn = xn),

ti < ti+1,∀i ∈ {1, . . . , n}, xj ∈ S

(2)

Definition (Stochastic Matrix2)

P ∈ [0, 1]n×n is called a row-stochastic matrix, if:
n∑

j=1
pij = 1,∀i ∈ {1, . . . , n}.

2Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021
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Basic computation on Markov Chains

I π0 ∈ [0, 1]1×|S|: probability distribution

I Probability of an event ω ∈ Ω:

π1
i =

j∑
i=1

π0
j · Pi ,j

π1 = π0 · P

π2 = π1 · P = π0 · P2

...

πk = πk−1 · P = . . . = π0 · Pk

(3)



Basic computation on Markov Chains

I Accumulation of labeled carbon atoms caused by constant influx of labeled
material (π0):

π∞ = π0 · I + π0 · P + π0 · P2 + . . . =
∞∑
k=0

π0 · Pk (4)

I ρ(P) 6< 1⇒ lim
n→∞

Pn 6= 0⇒ (4) is not convergent3

3Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013
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Transient states and recurrent states

Definition (Transience and Recurrence4)

Let (Xn)n∈N be a Markov chain with state space S, x ∈ S and

T x = min{n ≥ 1 : Xn = x}

the first return time. A state x is called:

I recurrent if P(T x <∞|X0 = x) = 1.

I transient if P(T x <∞|X0 = x) < 1.

A Markov chain is recurrent (transient) if all of its states are recurrent (transient).

4Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

Proposition (Characterization of Recurrency5)

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S . If x is recurrent and
x → y , then y is also recurrent.

I S = R∪ T

I P =

R T

R

T


P ′ 0

T Q


I Q is substochastic and

transient

I
∞∑
n=0

Qn <∞

5Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

Proposition (Characterization of Recurrency5)

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S . If x is recurrent and
x → y , then y is also recurrent.

I S = R∪ T

I P =

R T

R

T


P ′ 0

T Q


I Q is substochastic and

transient

I
∞∑
n=0

Qn <∞

5Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

Proposition (Characterization of Recurrency5)

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S . If x is recurrent and
x → y , then y is also recurrent.

I S = R∪ T

I P =

R T

R

T


P ′ 0

T Q



I Q is substochastic and
transient

I
∞∑
n=0

Qn <∞

5Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

Proposition (Characterization of Recurrency5)

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S . If x is recurrent and
x → y , then y is also recurrent.

I S = R∪ T

I P =

R T

R

T


P ′ 0

T Q


I Q is substochastic and

transient

I
∞∑
n=0

Qn <∞

5Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

Proposition (Characterization of Recurrency5)

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S . If x is recurrent and
x → y , then y is also recurrent.

I S = R∪ T

I P =

R T

R

T


P ′ 0

T Q


I Q is substochastic and

transient

I
∞∑
n=0

Qn <∞

5Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

I P =

T D

T

D


Q

0 1


I Pn =

T D

T

D


Qn

0 1
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Canonical decomposition of the state space
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T D

T

D


Qn

0 1





Lemma (Fundamental Matrix6)

Let (Xn)n≥0 be a Markov chain with state space S and Q the substochastic matrix,
representing all transient states as constructed above, then the matrix

V =
∞∑
n=0

Qn

is called the fundamental matrix of the Markov chain and is given by: V = (I −Q)−1

I Stable solution:

π∞ = π0 ·
∞∑
n=0

Qn = π0(I −Q)−1

6Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Reservoir Solution



Reservoir Solution

I The quantity of labeled carbon atoms can be computed recursively via

nt+1
i = nti − Efflux + Influx

= nti − nti ·
fi
ri

+
m∑
j=1

ntj ·
fj
rj
· qji + π0

i

(5)

I With fi and ri being the outflux and reservoir of a compound, respectively, we
define:

C =



f1
r1

0 . . . 0

0 f2
r2

. . . 0

...
...

. . .
...

0 0 . . . fm
rm
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Reservoir Solution
I The quantity of labeled carbon atoms can be computed recursively via

nt+1
i = nti − Efflux + Influx

= nti −
fi
ri
· nti +

m∑
j=1

fj
rj
· ntj · qji + π0

i

= nti − nti · cii +
m∑
j=1

cjj · ntj · qji + π0
i

(6)

I Yielding:

nt+1 = nt − nt · C + nt · C · Q+ π0

= nt · (I − C + C · Q)) + π0

= nt · (I + C · (Q− I )) + π0 = nt · M+ π0

(7)
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Reservoir Solution

I By induction we obtain

nt+1 = nt · M+ π0

= (nt−1 · M+ π0) · M+ π0

= nt−1 · M2 + π0 · (I +M)

...

= π0 · Mt+1 +
t∑

k=0

π0 · Mk

= π0 ·
t+1∑
k=0

Mk t→∞−→ ???

(8)



Reservoir Solution

Lemma
M, as constructed above, is substochastic and transient. Moreover, the stable
reservoir solution can be calculated directly, via:

π∞ = π0 ·
∞∑
k=0

Mk = π0(I −M)−1 = π0 · (I −Q)−1 · C−1

Proof: With M = I + C · (Q− I ) it follows:

π0 · (I −M)−1 · C = π0 · (I − (I + C · (Q− I ))−1 · C

= π0 · (C · (I −Q))−1 · C

= π0 · (I −Q)−1 · C−1 · C

= π0 · (I −Q)−1

(9)



Summary

I Solutions at particular timepoints: πt = π0 ·
t∑

k=n

Qn

I Stable solution (without reservoir): π∞ = π0 · (I −Q)−1

I Reservoir solutions at particular timepoints: πt = π0 ·
t∑

k=n

Mn

I Stable reservoir solution: π∞ = π0 · (I − Q)−1 · C−1
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Outlook

I Stable and timepoint isotopomer solution

I ITN - Isotopomer Transition Graph

I Modelling atom solution with continuous Markov chains[1.0em]
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Algebras and σ-Algebras

Definition (Algebra and σ-Algebra)

Let Ω 6= ∅ be non-empty set and P(Ω) the power set of Ω. A collection A ⊆ P(Ω) is
called Algebra if the following properties hold:

I ∅ ∈ A

I A ∈ A⇒ Ω \ A ∈ A

I A1, . . . ,An ∈ A⇒
n⋃

k=1

Ak ∈ A

A is called a σ-Algebra if additionally:

I An ∈ A, n ∈ N⇒
∞⋃
n=1

An ∈ A
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Measurable spaces and measures

Definition (Measurable space)

Let Ω 6= ∅,P(Ω) the power-set on Ω and A ⊆ P(Ω) a σ-Algebra on Ω. Then the tuple
(Ω,A) is called a measurable space

Definition (Measure and probability measure)

Let (Ω,A) be a measurable space. A function µ : A→ [0,∞] and P : A→ [0, 1] is
called a measure and a probability measure, respectively, if the following holds

I µ(∅) = 0,P(∅) = 0

I µ,P are σ-additive, i. e. for An ∈ A,Ai ∩ Aj = ∅, ∀i 6= j the following holds:

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An) and P

( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An)

I P(Ω) = 1

(Ω,A, µ) and (Ω,A,P) are called a measure space and probability space, respectively.



Measurability and random variables

Definition (Measurability)

Let (X ,A), (Y ,B) measurable spaces. A function f : X → Y is called A−B
measurable, if:

{x ∈ X | f (x) ∈ B} =: f −1(B) ∈ A

Definition (Random variable)

Let (Ω,A,P) be a probability space and (Σ,B) a measurable space. A
A−B−measurable function:

f : Ω→ Σ

is called Σ-random variable on Ω or just random variable.



Stochastic Process and Markov Process

Definition (Stochastic process)

Let (Ω,A,P) be a probability space, (Y ,B) a measurable space and T an index set. A
stochastic process X is a collection of random variables: Xt : Ω→ Y , t ∈ T , i. e. a
map:

X : Ω× T → Y , ω 7→ X (ω)

Definition (Markov process)

Let (Ω,A,P) be a probability space and (Y ,B) a measurable space. Let S be the
state space with Ω = Sn+1 and T an index set. A stochastic process
X : Ω× T → Y , t ∈ T is called Markov Process, if and only if:

P(Xtn+1|Xtn=xn,...,Xt0 =x0
) = P(Xtn+1=cn+1|Xtn=xn),

which is called the Markov Property.



Markov Chains

Lemma
Consider S 6= ∅ be a discrete (finite or countably infinite) set, named state space, with

π0 ∈ [0, 1]1×|S|, being a probability distribution, meaning
n∑

i=0
π0(xi ) = 1, and

Ω = Sn+1. Furthermore, let A ⊆ Ω be a σ - Algebra on Ω as well as:

p : S × S → [0, 1] with
∑
xj∈S

p(xi , xj) = 1, ∀xi ∈ S .

Then the function:

P : A→ [0, 1],P(A) =

0 if A = ∅∑
ω∈A

π0(x0) · p(x0, x1) · . . . · p(xn−1, xn) else

is a probability measure on A, i. e. (Ω,P(Ω),P) is a probability space.



Proof of the Lemma
P : Ω→ [0, 1],P(ω) = π0(xo)· (x0, x1) · . . . · (xn−1, xn) yields:

P : A→ [0, 1],P(A) =


0 if ω = ∅∑
ω∈A
P(ω) else

1. P(∅) = 0, nach Defintion

2. σ-Additivität: Seien An ∈ A, n ∈ N beliebig, sodass Ai ∩Aj = ∅, ∀i 6= j . Dann gilt:

P

( ∞⋃
n=1

An

)
=

∑
ω∈
∞⋃
n=1

An

P(ω)
Ai∩Aj=∅

=
∞∑
n=1

∑
ω∈An

P(ω)
Def. P

=
∞∑
n=1

P(An)

3. P(Ω) = 1 :

P(Ω) =
∑
ω∈Ω

P(ω) =
∑
ω∈Ω

π0(x0) · p(x0, x1) · . . . · p(xn−1, xn)

=
∑
xi0∈S

π0(x i0)
∑
xi1∈S

p(x i0 , x i1) . . .
∑

xin−1
∈S

p(x in−1 , x in)

=
∑
xi0∈S

π0(x i0)
∑
xi1∈S

p(x i0 , x i1) . . .
∑

xin−2
∈S

p(x in−2 , x in−1) · 1

= . . . =
∑
xi0∈S

π0(x i0) · 1 = 1

(10)
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Proposition

Proposition (Markov Property)

Let (Ω,P(Ω),P) be the probability space as defined above and (Xk)0≤k≤n the random
vector whose components are the coordinate random variables as defined above. Then
for all 0 ≤ i ≤ n − 1 and for all x0, x1, ..., xi+1 ∈ S :

P(Xi+1|X0 = x0, . . . , xi = xi ) = P(Xi+1 = xi ) = p(xi , xi+1)

Proof: By definition we have:

P(Xi+1|X0 = x0, . . . , xi = xi ) =
P(X0 = x0, . . . ,Xi+1) = xi+1

P(X0 = x0, . . . ,Xi = xi
)

=
π(x0) · p(x0, x1) . . . p(xi−1, xi ) · p(xi , xi+1)

π(x0) · p(x0, x1) . . . p(xi−1, xi )
= p(xi , xi+1)

(11)



Additionally we let: ω′ = {xi} × ω = (ω, xi ),∀ω ∈
i−1∏
j=0

S and obtain:

P(Xi+1 = xi+1|Xi = xi ) =
P(Xixi ,Xi+1 = xi+1)

P(Xi = xi )

=

∑
ω∈S i−1

P(ω′) · p(xi , xi+1)

P(Xi = xi )

=
P(Xi = xi ) · p(xi , xi+1)

P(Xi = xi )
= p(xi , xi+1)

(12)



Homogenous Markov chains and stochastic matrices

Definition (Homogenous Markov Chain)

We call (Xk)0≤k≤n constructed above a homogeneous Markov chain of length n with
state space S , one-step transition probabilities Pxy , x , y ∈ S , and initial distribution π0.

Definition (Stochastic Matrix)

A matrix P ∈ [0, 1]n×n is called a row-stochastic matrix, if:

n∑
j=1

pij = 1,∀i ∈ {1, . . . , d}

.



Irreducibility of Markov Chains

Definition (Irreducibility)

Let (Xk)0≤k≤n be a Markov chain with state space S and x , y ∈ S .

I x leads to y , denoted by x → y , if there exists n ≥ 1 such that (Pn)xy > 0.

I x and y communicate with each other, denoted by x ↔ y , if and only if x → y
and y ⇒ x .

I A Markov chain is irreducible, if for all x , y ∈ S , we have x → y . Otherwise, we
say the Markov chain is reducible.

Lemma (Communication is an equivalence relation)

The relation ↔ as defined above, is an equivalence relation.

Proof:

I a and b follow directly from the definition.

I c : Let x , y , z ∈ S with x ↔ y and y ↔ z . Then there exists k , l , n,m with
(P)l(xy) > 0, (P)k( yz) > 0, (P)m( zy) > 0, (P)l(yx) > 0



Lemma (Expected value for visits)

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S. Then for k ≥ 1:

P(V y ≥ k|X = x) = fxy fyy
k−1

Proof:

P(V y ≥ k|X0 = x) = P(V y = 1|X0 = x) · P(V y ≥ (k − 1)|X0 = y)

= P(T y <∞|X0 = x) · P(T y <∞|X0 = y)k−1

= fxy · f k−1
yy

(13)



Theorem
Let (Xn)n≥0 be a Markov chain with state space S.

a If y ∈ S is recurrent, then

P(V y =∞|X0 = y) = 1

and hence
E y (V y ) =∞

Furthermore, P(V y =∞|X0 = x) = fxy∀x ∈ S.
b If y is transient, then

P(V y <∞|X0 = x) = 1

and

Ex(V y ) =
fxy

1− fyy
<∞

for all x ∈ S.



Proof of the Theorem (continued)

By the previous lemma P(V y ≥ k|X0 = x) = fxy · f k−1
yy . If y recurrent

fyy = P(T x <∞|X0 = y) = 1 by definition. Then:

P(V y =∞|X0 = y) = lim
k→∞

P(V y ≥ k |X0 = y)

= lim
k→∞

fxy · f k−1
yy

= lim
k→∞

fxy · 1

= lim
k→∞

P(Ty <∞|X0 = x)

= P(Ty <∞|X0 = x) = 1

⇒ fxy > 0⇒ E(V y ) =∞

(14)



Proof of the Theorem (continued)

If y is transient, so fyy = P(Ty <∞|X0 = x) < 1. Then we obtain:

P(V y =∞|X0 = y) = lim
k→∞

P(V y ≥ k|X0 = y)

= lim
k→∞

fxy · f k−1
yy = 0

⇒ P(V y <∞|X0 = x) = 1− P(V y =∞|X0 = y) = 1

Furthermore : Ex(V y ) =
∞∑
k=1

P(V y ≥ k) =
∞∑
k=1

fxy · f k−1
yy

= fxy ·
∞∑
k=0

f kyy =
fxy

1− fyy
<∞

(15)



Corollary

Corollary (Convergence of transient states)

Let (Xn)n≥0 a Markov chain with state space S. If y ∈ S is transient, it holds:

lim
n→∞

(Pn)xy = 0,∀x ∈ S

Proof: Let 1y (z) =

1 if y = z

0 else
. Since V Y =

∞∑
n=1

1y (Xn) we obtain with the

Monotone Convergence Theorem:

Ex(V y ) = E

( ∞∑
k=1

1y (Xn)

)
MCT

=
∞∑
n=1

E(1y (Xn)) =
∞∑
n=1

P(X = y |X0 = x)

=
∞∑
n=1

(Pn)xy <∞⇒ lim
n→∞

(Pn)xy = 0,∀x ∈ S

(16)



Monotone Convergence Theorem

Theorem (Monotone Convergence Theorem)

Let (Xn)n≥0 be a sequence of nonnegative random variables and X a (not necessarily
finite) random variable with

lim
n→∞

Xn = X almost surely

If
0 ≤ X0 ≤ X1 ≤ X2 ≤ . . . almost surely

then
lim
n→∞

E(Xn) = E(X )



Substochastic Matrices

Definition
A square matrix P ∈ [0, 1]n×n is called row substochastic, if:

n∑
j=1

pij = 1, ∀i ∈ {1, . . . , n}

and

∃k ∈ {1, . . . , n} :
n∑

j=1

pkj < 1



Definition
Let (Xn)n≥0 be a Markov chain with state space S and Q the substochastic matrix,
representing all transient states as constructed above, then the matrix

V =
∞∑
n=0

Qn

is called the fundamental matrix of the Markov chain.

Lemma
Let (Xn)n≥0 be a Markov chain with state space S and V the fundamental matrix of
the Markov chain. Then:

V = (I − Q)−1



Proof of the Lemma

Proof: (I − Q) ·
n∑

k=0

Qk =
n∑

k=0

Qk −
n+1∑
k=0

Qk =
n∑

k=0

Qk(I − Q),∀n ∈ N

Since,
∞∑
k=0

Qk exists, we obtain:

(I −Q) · V = (I −Q) · lim
n→∞

n∑
k=0

Qk = lim
n→∞

(I −Q) ·
n∑

k=0

Qk

= lim
n→∞

((
n∑

k=0

Qk

)
· (I −Q)

)
=

(
lim
n→∞

n∑
k=0

Qk

)
· (I −Q)

=

( ∞∑
k=0

Qk

)
· (I −Q) = V · (I −Q)

⇒ V (I −Q) = (I −Q) · V = I ⇒ V = (I − Q)−1

(17)



Proposition

Let (Xn)n≥0 be a Markov chain with state space S and x , y ∈ S. If x is recurrent and
x → y , then

I y is also recurrent, and

I y → x , and fxy = fyx = 1

Proof: Assume x 6= y . Since x → y ,there exists a k ≥ 1 such that (Pk)xy > 0. If we
had fyx < 1, then with probability (1− fyx) > 0, the Markov chain, once in state y ,
would never visit x at any future time. It follows that:

P(T x =∞|X = x) = (1− fxx) ≥ Pk(1− fyx) > 0

However, since x is recurrent, fxx = 1, and so it must be that fyx = 1. In particular,
y → x .



Proof continued

Since y → x , there exists an l ≥ 1 such that P l
xy > 0. We have:

E(V y ) =
∞∑
n=1

(Pn)yy ≥
∞∑

m=1

(P l)yx · (Pm)xx · (Pk)yx = (P l)yx · (Pk)yx ·
∞∑

m=1

(Pm)xx =∞

and thus:

Ey (V y ) =∞

which implies that y is recurrent by Proposition 1.8.3. Switching the roles of x and y
in the argument, yields fxy = 1. This completes the proof.



Methodology

I Model atom transitions as a discrete-time markov - chain (DTMC)

(Xn)n∈N = (X1,X2, . . .)

I Hence:
(T )ij = Pr(Xn+1 = i |Xn = j)

I Use mathematical tool box provided by markov - chains
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Classification of Markov Processes

Time space
State Space

Discrete Continuous

Discrete Discrete-Time Markov
Chain (DTMC)

Discrete-time Markov
Process (DTMP)

Continuous Continuous-Time
Markov Chain (CTMC)

Continuous-time Markov
Process (CTMP)



Discrete-Time Markov Chain
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