Modelling isotope labelling in atom transition networks

Richard Golnik
University of Leipzig

2024/02/12

Introduction \& Motivation

2-13C-Glucose

Figure: Metabolic development of 2 - $^{13} \mathrm{C}$-Glucose via different metabolic pathways.

Methodology

Metabolic- Reaction - Network

Figure: Schematic depiction of a part of a metabolic network.

Methodology

Metabolic- Reaction - Network

Figure: Schematic depiction of a part of a metabolic network with established flux.

Methodology

Metabolic Reaction - Network

Atom - Transition - Network (ATN)

Figure: Schematic depiction of a part of a metabolic network and an atom-transition network with established flux.

Methodology

ATN with Transition Probabilities

Figure: Schematic depiction of an ATN with transition probabilities.

Methodology

Single - Carbon - Atom -
Transition Graph

Figure: Schematic depiction of an atom-transition network with transition probabilities.

Definition (Markov Processes and Markov Chains ${ }^{1}$)

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (Y, \mathfrak{B}) a measurable space. Let S be the state space with $\Omega=\prod_{i=0}^{n} \mathcal{S}$ and T an index set. A stochastic process

$$
X: \Omega \times T \rightarrow Y, t \in T
$$

is called Markov Process, if and only if:

$$
\begin{array}{r}
\mathbb{P}\left(X_{t_{n+1}} \mid X_{t_{n}}=x_{n}, \ldots, X_{t_{0}}=x_{0}\right)=\mathbb{P}\left(X_{t_{n+1}}=x_{n+1} \mid X_{t_{n}}=x_{n}\right), \\
t_{i}<t_{i+1}, \forall i \in\{1, \ldots, n\}, x_{j} \in S \tag{1}
\end{array}
$$

which is called the Markov Property.

[^0]
Markov Chain

- \mathcal{S} : state space, $S=\left\{C_{3,1}, C_{3,2}, \ldots\right\}$

${ }^{2}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

Markov Chain

- \mathcal{S} : state space, $S=\left\{C_{3,1}, C_{3,2}, \ldots\right\}$

Definition (Stochastic Matrix ${ }^{2}$)
$P \in[0,1]^{n \times n}$ is called a row-stochastic matrix, if: $\sum_{j=1}^{n} p_{i j}=1, \forall i \in\{1, \ldots, n\}$.

Markov Chain

- \mathcal{S} : state space, $S=\left\{C_{3,1}, C_{3,2}, \ldots\right\}$

- Transition probabilities: $P \in[0,1]^{|\mathcal{S}| \times|\mathcal{S}|}$
- Markov Property:

$$
\begin{align*}
& \mathbb{P}\left(X_{t_{n+1}} \mid X_{t_{n}}=x_{n}, \ldots, X_{t_{0}}=x_{0}\right) \\
& =\mathbb{P}\left(X_{t_{n+1}}=x_{n+1} \mid X_{t_{n}}=x_{n}\right), \tag{2}\\
& t_{i}<t_{i+1}, \forall i \in\{1, \ldots, n\}, x_{j} \in S
\end{align*}
$$

Definition (Stochastic Matrix ${ }^{2}$)
$P \in[0,1]^{n \times n}$ is called a row-stochastic matrix, if: $\sum_{j=1}^{n} p_{i j}=1, \forall i \in\{1, \ldots, n\}$.

Basic computation on Markov Chains

- $\pi^{0} \in[0,1]^{1 \times|\mathcal{S}|}$: probability distribution
- Probability of an event $\omega \in \Omega$:

$$
\pi^{k}=\pi^{k-1} \cdot P=\ldots=\pi^{0} \cdot P^{k}
$$

Basic computation on Markov Chains

- Accumulation of labeled carbon atoms caused by constant influx of labeled material $\left(\pi^{0}\right)$:

$$
\begin{equation*}
\pi^{\infty}=\pi^{0} \cdot I+\pi^{0} \cdot P+\pi^{0} \cdot P^{2}+\ldots=\sum_{k=0}^{\infty} \pi^{0} \cdot P^{k} \tag{4}
\end{equation*}
$$

[^1]
Basic computation on Markov Chains

- Accumulation of labeled carbon atoms caused by constant influx of labeled material $\left(\pi^{0}\right)$:

$$
\begin{equation*}
\pi^{\infty}=\pi^{0} \cdot I+\pi^{0} \cdot P+\pi^{0} \cdot P^{2}+\ldots=\sum_{k=0}^{\infty} \pi^{0} \cdot P^{k} \tag{4}
\end{equation*}
$$

- $\rho(P) \nless 1 \Rightarrow \lim _{n \rightarrow \infty} P^{n} \neq 0 \Rightarrow(4)$ is not convergent ${ }^{3}$

[^2]
Transient states and recurrent states

Definition (Transience and Recurrence ${ }^{4}$)

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a Markov chain with state space $\mathcal{S}, x \in \mathcal{S}$ and

$$
T^{x}=\min \left\{n \geq 1: X_{n}=x\right\}
$$

the first return time. A state x is called:

- recurrent if $\mathbb{P}\left(T^{x}<\infty \mid X_{0}=x\right)=1$.
- transient if $\mathbb{P}\left(T^{x}<\infty \mid X_{0}=x\right)<1$.

A Markov chain is recurrent (transient) if all of its states are recurrent (transient).

[^3]
Canonical decomposition of the state space

Proposition (Characterization of Recurrency ${ }^{5}$)
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in S$. If x is recurrent and $x \rightarrow y$, then y is also recurrent.

[^4]
Canonical decomposition of the state space

Proposition (Characterization of Recurrency ${ }^{5}$)
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in S$. If x is recurrent and $x \rightarrow y$, then y is also recurrent.

- $S=\mathcal{R} \cup \mathcal{T}$

[^5]
Canonical decomposition of the state space

Proposition (Characterization of Recurrency ${ }^{5}$)
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in S$. If x is recurrent and $x \rightarrow y$, then y is also recurrent.

- $S=\mathcal{R} \cup \mathcal{T}$

$$
\left.\begin{array}{c}
\\
\\
\mathcal{T}=
\end{array} \begin{array}{c|c}
\mathcal{R} & \mathcal{T} \\
\mathcal{R} \\
\mathcal{P}^{\prime} & 0 \\
& \\
\hline \mathcal{T} & \mathcal{Q}
\end{array}\right)
$$

[^6]
Canonical decomposition of the state space

Proposition (Characterization of Recurrency ${ }^{5}$)

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in S$. If x is recurrent and $x \rightarrow y$, then y is also recurrent.

- $S=\mathcal{R} \cup \mathcal{T}$

$$
\left.\begin{array}{c}
\\
\mathcal{R} \\
\mathcal{T}
\end{array} \begin{array}{c|c}
\mathcal{R} & \mathcal{T} \\
\mathcal{P}^{\prime} & 0 \\
& \\
\hline \mathcal{T} & \mathcal{Q}
\end{array}\right) \quad \begin{aligned}
& \mathcal{Q} \text { is substochastic and } \\
& \text { transient }
\end{aligned}
$$

[^7]
Canonical decomposition of the state space

Proposition (Characterization of Recurrency ${ }^{5}$)

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in S$. If x is recurrent and $x \rightarrow y$, then y is also recurrent.

- $S=\mathcal{R} \cup \mathcal{T}$

$$
\begin{gathered}
\\
\\
\mathcal{T}
\end{gathered}\left(\begin{array}{c|c}
\mathcal{R} & \mathcal{T} \\
\mathcal{P}^{\prime} & 0 \\
& \\
\hline \mathcal{T} & \mathcal{Q}
\end{array}\right) \quad \begin{aligned}
& \\
& \hline \mathcal{Q} \text { is substochastic and } \\
& \text { transient } \\
& \sum_{n=0}^{\infty} Q^{n}<\infty
\end{aligned}
$$

[^8]
Canonical decomposition of the state space

Canonical decomposition of the state space

Single - Carbon - Atom -
Transition Graph

Canonical decomposition of the state space

Single - Carbon - Atom -
Transition Graph

Lemma (Fundamental Matrix ${ }^{6}$)
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and \mathcal{Q} the substochastic matrix, representing all transient states as constructed above, then the matrix

$$
V=\sum_{n=0}^{\infty} Q^{n}
$$

is called the fundamental matrix of the Markov chain and is given by: $V=(I-Q)^{-1}$

- Stable solution:

$$
\pi^{\infty}=\pi^{0} \cdot \sum_{n=0}^{\infty} \mathcal{Q}^{n}=\pi^{0}(I-\mathcal{Q})^{-1}
$$

[^9]
Reservoir Solution

Single - Carbon - Atom -

Transition Graph

Reservoir Solution

- The quantity of labeled carbon atoms can be computed recursively via

$$
\begin{align*}
n_{i}^{t+1} & =n_{i}^{t}-\text { Efflux }+ \text { Influx } \\
& =n_{i}^{t}-n_{i}^{t} \cdot \frac{f_{i}}{r_{i}}+\sum_{j=1}^{m} n_{j}^{t} \cdot \frac{f_{j}}{r_{j}} \cdot q_{j i}+\pi_{i}^{0} \tag{5}
\end{align*}
$$

Reservoir Solution

- The quantity of labeled carbon atoms can be computed recursively via

$$
\begin{align*}
n_{i}^{t+1} & =n_{i}^{t}-\text { Efflux }+ \text { Influx } \\
& =n_{i}^{t}-n_{i}^{t} \cdot \frac{f_{i}}{r_{i}}+\sum_{j=1}^{m} n_{j}^{t} \cdot \frac{f_{j}}{r_{j}} \cdot q_{j i}+\pi_{i}^{0} \tag{5}
\end{align*}
$$

- With f_{i} and r_{i} being the outflux and reservoir of a compound, respectively, we define:

$$
C=\left(\begin{array}{cccc}
\frac{f_{1}}{r_{1}} & 0 & \ldots & 0 \\
0 & \frac{f_{2}}{r_{2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \frac{f_{m}}{r_{m}}
\end{array}\right)
$$

Reservoir Solution

- The quantity of labeled carbon atoms can be computed recursively via

$$
\begin{align*}
n_{i}^{t+1} & =n_{i}^{t}-\text { Efflux }+ \text { Influx } \\
& =n_{i}^{t}-\frac{f_{i}}{r_{i}} \cdot n_{i}^{t}+\sum_{j=1}^{m} \frac{f_{j}}{r_{j}} \cdot n_{j}^{t} \cdot q_{j i}+\pi_{i}^{0} \tag{6}\\
& =n_{i}^{t}-n_{i}^{t} \cdot c_{i i}+\sum_{j=1}^{m} c_{j j} \cdot n_{j}^{t} \cdot q_{j i}+\pi_{i}^{0}
\end{align*}
$$

Reservoir Solution

- The quantity of labeled carbon atoms can be computed recursively via

$$
\begin{align*}
n_{i}^{t+1} & =n_{i}^{t}-\text { Efflux }+ \text { Influx } \\
& =n_{i}^{t}-\frac{f_{i}}{r_{i}} \cdot n_{i}^{t}+\sum_{j=1}^{m} \frac{f_{j}}{r_{j}} \cdot n_{j}^{t} \cdot q_{j i}+\pi_{i}^{0} \tag{6}\\
& =n_{i}^{t}-n_{i}^{t} \cdot c_{i i}+\sum_{j=1}^{m} c_{j j} \cdot n_{j}^{t} \cdot q_{j i}+\pi_{i}^{0}
\end{align*}
$$

- Yielding:

$$
\begin{align*}
n^{t+1} & =n^{t}-n^{t} \cdot \mathcal{C}+n^{t} \cdot \mathcal{C} \cdot \mathcal{Q}+\pi^{0} \\
& \left.=n^{t} \cdot(I-C+C \cdot \mathcal{Q})\right)+\pi^{0} \tag{7}\\
& =n^{t} \cdot(I+C \cdot(\mathcal{Q}-I))+\pi^{0}=n^{t} \cdot \mathcal{M}+\pi^{0}
\end{align*}
$$

Reservoir Solution

- By induction we obtain

$$
\begin{align*}
& n^{t+1}= n^{t} \cdot \mathcal{M}+\pi^{0} \\
&=\left(n^{t-1} \cdot \mathcal{M}+\pi^{0}\right) \cdot \mathcal{M}+\pi^{0} \\
&= n^{t-1} \cdot \mathcal{M}^{2}+\pi^{0} \cdot(I+\mathcal{M}) \\
& \vdots \tag{8}\\
&= \pi^{0} \cdot \mathcal{M}^{t+1}+\sum_{k=0}^{t} \pi^{0} \cdot \mathcal{M}^{k} \\
&= \pi^{0} \cdot \sum_{k=0}^{t+1} \mathcal{M}^{k} \xrightarrow{t \rightarrow \infty} ? ? ?
\end{align*}
$$

Reservoir Solution

Lemma

\mathcal{M}, as constructed above, is substochastic and transient. Moreover, the stable reservoir solution can be calculated directly, via:

$$
\pi^{\infty}=\pi^{0} \cdot \sum_{k=0}^{\infty} \mathcal{M}^{k}=\pi^{0}(I-\mathcal{M})^{-1}=\pi^{0} \cdot(I-\mathcal{Q})^{-1} \cdot C^{-1}
$$

Proof: With $\mathcal{M}=I+C \cdot(\mathcal{Q}-I)$ it follows:

$$
\begin{align*}
\pi^{0} \cdot(I-\mathcal{M})^{-1} \cdot C & =\pi^{0} \cdot\left(I-(I+C \cdot(\mathcal{Q}-I))^{-1} \cdot C\right. \\
& =\pi^{0} \cdot(C \cdot(I-\mathcal{Q}))^{-1} \cdot C \\
& =\pi^{0} \cdot(I-\mathcal{Q})^{-1} \cdot C^{-1} \cdot C \tag{9}\\
& =\pi^{0} \cdot(I-\mathcal{Q})^{-1}
\end{align*}
$$

Summary

- Solutions at particular timepoints: $\pi^{t}=\pi^{0} \cdot \sum_{k=n}^{t} \mathcal{Q}^{n}$

Summary

- Solutions at particular timepoints: $\pi^{t}=\pi^{0} \cdot \sum_{k=n}^{t} \mathcal{Q}^{n}$
- Stable solution (without reservoir): $\pi^{\infty}=\pi^{0} \cdot(I-\mathcal{Q})^{-1}$

Summary

- Solutions at particular timepoints: $\pi^{t}=\pi^{0} \cdot \sum_{k=n}^{t} \mathcal{Q}^{n}$
- Stable solution (without reservoir): $\pi^{\infty}=\pi^{0} \cdot(I-\mathcal{Q})^{-1}$
- Reservoir solutions at particular timepoints: $\pi^{t}=\pi^{0} \cdot \sum_{k=n}^{t} \mathcal{M}^{n}$

Summary

- Solutions at particular timepoints: $\pi^{t}=\pi^{0} \cdot \sum_{k=n}^{t} \mathcal{Q}^{n}$
- Stable solution (without reservoir): $\pi^{\infty}=\pi^{0} \cdot(I-\mathcal{Q})^{-1}$
- Reservoir solutions at particular timepoints: $\pi^{t}=\pi^{0} \cdot \sum_{k=n}^{t} \mathcal{M}^{n}$
- Stable reservoir solution: $\pi^{\infty}=\pi^{0} \cdot(I-Q)^{-1} \cdot C^{-1}$

Outlook

- Stable and timepoint isotopomer solution
- ITN - Isotopomer Transition Graph
- Modelling atom solution with continuous Markov chains[1.0em]

Acknowledgement

- Peter F. Stadler
- Thomas Gatter
- Nora Beier

UNIVERSITAT LEIPZIG

Thank you.

Algebras and σ-Algebras

Definition (Algebra and σ-Algebra)
Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω. A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

Algebras and σ-Algebras

Definition (Algebra and σ-Algebra)
Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω. A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

- $\emptyset \in \mathfrak{A}$

Algebras and σ-Algebras

Definition (Algebra and σ-Algebra)
Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω. A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

- $\emptyset \in \mathfrak{A}$
- $A \in \mathfrak{A} \Rightarrow \Omega \backslash A \in \mathfrak{A}$

Algebras and σ-Algebras

Definition (Algebra and σ-Algebra)
Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω. A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

- $\emptyset \in \mathfrak{A}$
- $A \in \mathfrak{A} \Rightarrow \Omega \backslash A \in \mathfrak{A}$
- $A_{1}, \ldots, A_{n} \in \mathfrak{A} \Rightarrow \bigcup_{k=1}^{n} A_{k} \in \mathfrak{A}$

Algebras and σ-Algebras

Definition (Algebra and σ-Algebra)

Let $\Omega \neq \emptyset$ be non-empty set and $\mathfrak{P}(\Omega)$ the power set of Ω. A collection $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ is called Algebra if the following properties hold:

- $\emptyset \in \mathfrak{A}$
- $A \in \mathfrak{A} \Rightarrow \Omega \backslash A \in \mathfrak{A}$
- $A_{1}, \ldots, A_{n} \in \mathfrak{A} \Rightarrow \bigcup_{k=1}^{n} A_{k} \in \mathfrak{A}$
\mathfrak{A} is called a σ-Algebra if additionally:
- $A_{n} \in \mathfrak{A}, n \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathfrak{A}$

Measurable spaces and measures

Definition (Measurable space)

Let $\Omega \neq \emptyset, \mathfrak{P}(\Omega)$ the power-set on Ω and $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ a σ-Algebra on Ω. Then the tuple (Ω, \mathfrak{A}) is called a measurable space

Definition (Measure and probability measure)
Let (Ω, \mathfrak{A}) be a measurable space. A function $\mu: \mathfrak{A} \rightarrow[0, \infty]$ and $\mathbb{P}: \mathfrak{A} \rightarrow[0,1]$ is called a measure and a probability measure, respectively, if the following holds

- $\mu(\emptyset)=0, \mathbb{P}(\emptyset)=0$
- μ, \mathbb{P} are σ-additive, i. e. for $A_{n} \in \mathfrak{A}, A_{i} \cap A_{j}=\emptyset, \forall i \neq j$ the following holds:

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right) \text { and } \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

- $\mathbb{P}(\Omega)=1$
$(\Omega, \mathfrak{A}, \mu)$ and $(\Omega, \mathfrak{A}, \mathbb{P})$ are called a measure space and probability space, respectively.

Measurability and random variables

Definition (Measurability)

Let $(X, \mathfrak{A}),(Y, \mathfrak{B})$ measurable spaces. A function $f: X \rightarrow Y$ is called $\mathfrak{A}-\mathfrak{B}$ measurable, if:

$$
\{x \in X \mid f(x) \in B\}=: f^{-1}(B) \in \mathfrak{A}
$$

Definition (Random variable)
Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (Σ, \mathfrak{B}) a measurable space. A $\mathfrak{A}-\mathfrak{B}$-measurable function:

$$
f: \Omega \rightarrow \Sigma
$$

is called Σ-random variable on Ω or just random variable.

Stochastic Process and Markov Process

Definition (Stochastic process)

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space, (Y, \mathfrak{B}) a measurable space and T an index set. A stochastic process X is a collection of random variables: $X_{t}: \Omega \rightarrow Y, t \in T$, i. e. a map:

$$
X: \Omega \times T \rightarrow Y, \omega \mapsto X(\omega)
$$

Definition (Markov process)

Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space and (Y, \mathfrak{B}) a measurable space. Let S be the state space with $\Omega=S^{n+1}$ and T an index set. A stochastic process $X: \Omega \times T \rightarrow Y, t \in T$ is called Markov Process, if and only if:

$$
P\left(X_{t_{n+1} \mid X_{t_{n}}=x_{n}, \ldots, X_{t_{0}}=x_{0}}\right)=\mathbb{P}\left(X_{t_{n+1}=c_{n+1} \mid X_{t_{n}}=x_{n}}\right),
$$

which is called the Markov Property.

Markov Chains

Lemma

Consider $S \neq \emptyset$ be a discrete (finite or countably infinite) set, named state space, with $\pi^{0} \in[0,1]^{1 \times|S|}$, being a probability distribution, meaning $\sum_{i=0}^{n} \pi^{0}\left(x_{i}\right)=1$, and
$\Omega=S^{n+1}$. Furthermore, let $\mathfrak{A} \subseteq \Omega$ be a σ - Algebra on Ω as well as:

$$
p: S \times S \rightarrow[0,1] \text { with } \sum_{x_{j} \in S} p\left(x_{i}, x_{j}\right)=1, \forall x_{i} \in S
$$

Then the function:

$$
\begin{array}{ll}
\text { the function: } & \text { if } A=\emptyset \\
\mathbb{P}: \mathfrak{A} \rightarrow[0,1], \mathbb{P}(A)= \begin{cases}0 & \text { else }\end{cases}
\end{array}
$$

is a probability measure on \mathfrak{A}, i. e. $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ is a probability space.

Proof of the Lemma

$\mathcal{P}: \Omega \rightarrow[0,1], \mathcal{P}(\omega)=\pi^{0}\left(x_{0}\right) \cdot\left(x_{0}, x_{1}\right) \cdot \ldots \cdot\left(x_{n-1}, x_{n}\right)$ yields:

$$
\mathbb{P}: \mathfrak{A} \rightarrow[0,1], \mathbb{P}(A)= \begin{cases}0 & \text { if } \omega=\emptyset \\ \sum_{\omega \in A} \mathcal{P}(\omega) & \text { else }\end{cases}
$$

1. $\mathbb{P}(\emptyset)=0$, nach Defintion

Proof of the Lemma

$$
\mathcal{P}: \Omega \rightarrow[0,1], \mathcal{P}(\omega)=\pi^{0}\left(x_{0}\right) \cdot\left(x_{0}, x_{1}\right) \cdot \ldots \cdot\left(x_{n-1}, x_{n}\right) \text { yields: }
$$

$$
\mathbb{P}: \mathfrak{A} \rightarrow[0,1], \mathbb{P}(A)= \begin{cases}0 & \text { if } \omega=\emptyset \\ \sum_{\omega \in A} \mathcal{P}(\omega) & \text { else }\end{cases}
$$

1. $\mathbb{P}(\emptyset)=0$, nach Defintion
2. σ-Additivität: Seien $A_{n} \in \mathfrak{A}, n \in \mathbb{N}$ beliebig, sodass $A_{i} \cap A_{j}=\emptyset, \forall i \neq j$. Dann gilt:

$$
\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{\omega \in \bigcup_{n=1}^{\infty} A_{n}} \mathcal{P}(\omega) \stackrel{A_{i} \cap A_{j}=\emptyset}{=} \sum_{n=1}^{\infty} \sum_{\omega \in A_{n}} \mathcal{P}(\omega) \stackrel{\text { Def. } \mathbb{P}}{=} \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

Proof of the Lemma

$$
\mathcal{P}: \Omega \rightarrow[0,1], \mathcal{P}(\omega)=\pi^{0}\left(x_{0}\right) \cdot\left(x_{0}, x_{1}\right) \cdot \ldots \cdot\left(x_{n-1}, x_{n}\right) \text { yields: }
$$

3. $\mathbb{P}(\Omega)=1$:

$$
\mathbb{P}: \mathfrak{A} \rightarrow[0,1], \mathbb{P}(A)= \begin{cases}0 & \text { if } \omega=\emptyset \\ \sum_{\omega \in A} \mathcal{P}(\omega) & \text { else }\end{cases}
$$

$$
\begin{align*}
\mathbb{P}(\Omega) & =\sum_{\omega \in \Omega} \mathcal{P}(\omega)=\sum_{\omega \in \Omega} \pi^{0}\left(x_{0}\right) \cdot p\left(x_{0}, x_{1}\right) \cdot \ldots \cdot p\left(x_{n-1}, x_{n}\right) \\
& =\sum_{x_{i_{0}} \in S} \pi^{0}\left(x^{i_{0}}\right) \sum_{x_{i_{1}} \in S} p\left(x^{i_{0}}, x^{i_{1}}\right) \ldots \sum_{x_{i_{n-1}} \in S} p\left(x^{i_{n-1}}, x^{i_{n}}\right) \\
& =\sum_{x_{i_{0}} \in S} \pi^{0}\left(x^{i_{0}}\right) \sum_{x_{i_{1} \in S}} p\left(x^{i_{0}}, x^{i_{1}}\right) \ldots \sum_{x_{i_{n-2}} \in S} p\left(x^{i_{n-2}}, x^{i_{n-1}}\right) \cdot 1 \tag{10}\\
& =\ldots=\sum_{x_{i_{0}} \in S} \pi^{0}\left(x^{i_{0}}\right) \cdot 1=1
\end{align*}
$$

Proposition

Proposition (Markov Property)

Let $(\Omega, \mathfrak{P}(\Omega), \mathbb{P})$ be the probability space as defined above and $\left(X_{k}\right)_{0 \leq k \leq n}$ the random vector whose components are the coordinate random variables as defined above. Then for all $0 \leq i \leq n-1$ and for all $x_{0}, x_{1}, \ldots, x_{i+1} \in S$:

$$
\mathbb{P}\left(X_{i+1} \mid X_{0}=x_{0}, \ldots, x_{i}=x_{i}\right)=\mathbb{P}\left(X_{i+1}=x_{i}\right)=p\left(x_{i}, x_{i+1}\right)
$$

Proof: By definition we have:

$$
\begin{align*}
\mathbb{P}\left(X_{i+1} \mid X_{0}\right. & \left.\left.=x_{0}, \ldots, x_{i}=x_{i}\right)=\frac{\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{i+1}\right)=x_{i+1}}{\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{i}=x_{i}\right.}\right) \\
& =\frac{\pi\left(x_{0}\right) \cdot p\left(x_{0}, x_{1}\right) \ldots p\left(x_{i-1}, x_{i}\right) \cdot p\left(x_{i}, x_{i+1}\right)}{\pi\left(x_{0}\right) \cdot p\left(x_{0}, x_{1}\right) \ldots p\left(x_{i-1}, x_{i}\right)}=p\left(x_{i}, x_{i+1}\right) \tag{11}
\end{align*}
$$

Additionally we let: $\omega^{\prime}=\left\{x_{i}\right\} \times \omega=\left(\omega, x_{i}\right), \forall \omega \in \prod_{j=0}^{i-1} S$ and obtain:

$$
\begin{align*}
\mathbb{P}\left(X_{i+1}=x_{i+1} \mid X_{i}=x_{i}\right) & =\frac{\mathbb{P}\left(X_{i} x_{i}, X_{i+1}=x_{i+1}\right)}{\mathbb{P}\left(X_{i}=x_{i}\right)} \\
& =\frac{\sum_{\omega \in S^{i-1}} \mathcal{P}\left(\omega^{\prime}\right) \cdot p\left(x_{i}, x_{i+1}\right)}{\mathbb{P}\left(X_{i}=x_{i}\right)} \tag{12}\\
& =\frac{\mathbb{P}\left(X_{i}=x_{i}\right) \cdot p\left(x_{i}, x_{i+1}\right)}{\mathbb{P}\left(X_{i}=x_{i}\right)}=p\left(x_{i}, x_{i+1}\right)
\end{align*}
$$

Homogenous Markov chains and stochastic matrices

Definition (Homogenous Markov Chain)

We call $\left(X_{k}\right)_{0 \leq k \leq n}$ constructed above a homogeneous Markov chain of length n with state space S, one-step transition probabilities $P_{x y}, x, y \in S$, and initial distribution π^{0}.

Definition (Stochastic Matrix)
A matrix $P \in[0,1]^{n \times n}$ is called a row-stochastic matrix, if:

$$
\sum_{j=1}^{n} p_{i j}=1, \forall i \in\{1, \ldots, d\}
$$

Irreducibility of Markov Chains

Definition (Irreducibility)

Let $\left(X_{k}\right)_{0 \leq k \leq n}$ be a Markov chain with state space S and $x, y \in S$.

- x leads to y, denoted by $x \rightarrow y$, if there exists $n \geq 1$ such that $\left(P^{n}\right)_{x y}>0$.
- x and y communicate with each other, denoted by $x \leftrightarrow y$, if and only if $x \rightarrow y$ and $y \Rightarrow x$.
- A Markov chain is irreducible, if for all $x, y \in S$, we have $x \rightarrow y$. Otherwise, we say the Markov chain is reducible.

Lemma (Communication is an equivalence relation)

The relation \leftrightarrow as defined above, is an equivalence relation.

Proof:

- a and b follow directly from the definition.
- c : Let $x, y, z \in S$ with $x \leftrightarrow y$ and $y \leftrightarrow z$. Then there exists k, I, n, m with

$$
\left.\left.\left.\left.(P)_{(}^{\prime} x y\right)>0,(P)_{(}^{k} y z\right)>0,(P)_{(}^{m} z y\right)>0,(P)_{(}^{\prime} y x\right)>0
$$

Lemma (Expected value for visits)
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in \mathcal{S}$. Then for $k \geq 1$:

$$
\mathbb{P}\left(V^{y} \geq k \mid X=x\right)=f_{x y} f_{y} y^{k-1}
$$

Proof:

$$
\begin{align*}
\mathbb{P}\left(V^{y} \geq k \mid X_{0}=x\right) & =\mathbb{P}\left(V^{y}=1 \mid X_{0}=x\right) \cdot \mathbb{P}\left(V^{y} \geq(k-1) \mid X_{0}=y\right) \\
& =\mathbb{P}\left(T^{y}<\infty \mid X_{0}=x\right) \cdot \mathbb{P}\left(T^{y}<\infty \mid X_{0}=y\right)^{k-1} \tag{13}\\
& =f_{x y} \cdot f_{y y}^{k-1}
\end{align*}
$$

Theorem

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S}.
a If $y \in \mathcal{S}$ is recurrent, then

$$
\mathbb{P}\left(V^{y}=\infty \mid X_{0}=y\right)=1
$$

and hence

$$
E^{y}\left(V^{y}\right)=\infty
$$

Furthermore, $\mathbb{P}\left(V^{y}=\infty \mid X_{0}=x\right)=f_{x y} \forall x \in \mathcal{S}$.
b If y is transient, then

$$
\mathbb{P}\left(V^{y}<\infty \mid X_{0}=x\right)=1
$$

and

$$
E_{x}\left(V^{y}\right)=\frac{f_{x y}}{1-f_{y y}}<\infty
$$

for all $x \in \mathcal{S}$.

Proof of the Theorem (continued)

By the previous lemma $\mathbb{P}\left(V^{y} \geq k \mid X_{0}=x\right)=f_{x y} \cdot f_{y y}^{k-1}$. If y recurrent $f_{y y}=\mathbb{P}\left(T^{x}<\infty \mid X_{0}=y\right)=1$ by definition. Then:

$$
\begin{align*}
\mathbb{P}\left(V^{y}=\infty \mid X_{0}=y\right) & =\lim _{k \rightarrow \infty} \mathbb{P}\left(V^{y} \geq k \mid X_{0}=y\right) \\
& =\lim _{k \rightarrow \infty} f_{x y} \cdot f_{y y}^{k-1} \\
& =\lim _{k \rightarrow \infty} f_{x y} \cdot 1 \tag{14}\\
& =\lim _{k \rightarrow \infty} \mathbb{P}\left(T y<\infty \mid X_{0}=x\right) \\
& =\mathbb{P}\left(T y<\infty \mid X_{0}=x\right)=1 \\
& \Rightarrow f_{x y}>0 \Rightarrow \mathbb{E}\left(V^{y}\right)=\infty
\end{align*}
$$

Proof of the Theorem (continued)

If y is transient, so $f_{y y}=\mathbb{P}(T y<\infty \mid X 0=x)<1$. Then we obtain:

$$
\begin{align*}
\mathbb{P}\left(V^{y}=\infty \mid X_{0}=y\right) & =\lim _{k \rightarrow \infty} \mathbb{P}\left(V^{y} \geq k \mid X_{0}=y\right) \\
& =\lim _{k \rightarrow \infty} f_{x y} \cdot f_{y y}^{k-1}=0 \\
& \Rightarrow \mathbb{P}\left(V^{y}<\infty \mid X_{0}=x\right)=1-\mathbb{P}\left(V^{y}=\infty \mid X_{0}=y\right)=1 \tag{15}
\end{align*}
$$

Furthermore : $E_{x}\left(V^{y}\right)=\sum_{k=1}^{\infty} \mathbb{P}\left(V^{y} \geq k\right)=\sum_{k=1}^{\infty} f_{x y} \cdot f_{y y}^{k-1}$

$$
=f_{x y} \cdot \sum_{k=0}^{\infty} f_{y y}^{k}=\frac{f_{x y}}{1-f_{y y}}<\infty
$$

Corollary

Corollary (Convergence of transient states)
Let $\left(X_{n}\right)_{n \geq 0}$ a Markov chain with state space \mathcal{S}. If $y \in \mathcal{S}$ is transient, it holds:

$$
\lim _{n \rightarrow \infty}\left(P^{n}\right)_{x y}=0, \forall x \in S
$$

Proof: Let $\mathbb{1}_{y}(z)=\left\{\begin{array}{ll}1 & \text { if } y=z \\ 0 & \text { else }\end{array}\right.$. Since $V^{Y}=\sum_{n=1}^{\infty} \mathbb{1}_{y}\left(X_{n}\right)$ we obtain with the
Monotone Convergence Theorem:

$$
\begin{align*}
\mathbb{E}_{x}\left(V^{y}\right) & =\mathbb{E}\left(\sum_{k=1}^{\infty} \mathbb{1}_{y}\left(X_{n}\right)\right) \stackrel{M C T}{=} \sum_{n=1}^{\infty} \mathbb{E}\left(\mathbb{1}_{y}\left(X_{n}\right)\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(X=y \mid X_{0}=x\right) \tag{16}\\
& =\sum_{n=1}^{\infty}\left(P^{n}\right)_{x y}<\infty \Rightarrow \lim _{n \rightarrow \infty}\left(P^{n}\right)_{x y}=0, \forall x \in \mathcal{S}
\end{align*}
$$

Monotone Convergence Theorem

Theorem (Monotone Convergence Theorem)
Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of nonnegative random variables and X a (not necessarily finite) random variable with

$$
\lim _{n \rightarrow \infty} X_{n}=X \quad \text { almost surely }
$$

If

$$
0 \leq X_{0} \leq X_{1} \leq X_{2} \leq \ldots \quad \text { almost surely }
$$

then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)=\mathbb{E}(X)
$$

Substochastic Matrices

Definition

A square matrix $P \in[0,1]^{n \times n}$ is called row substochastic, if:

$$
\sum_{j=1}^{n} p_{i j}=1, \forall i \in\{1, \ldots, n\}
$$

and

$$
\exists k \in\{1, \ldots, n\}: \sum_{j=1}^{n} p_{k j}<1
$$

Definition

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and \mathcal{Q} the substochastic matrix, representing all transient states as constructed above, then the matrix

$$
V=\sum_{n=0}^{\infty} Q^{n}
$$

is called the fundamental matrix of the Markov chain.
Lemma
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and V the fundamental matrix of the Markov chain. Then:

$$
V=(I-Q)^{-1}
$$

Proof of the Lemma

Proof: $(I-Q) \cdot \sum_{k=0}^{n} Q^{k}=\sum_{k=0}^{n} Q^{k}-\sum_{k=0}^{n+1} Q^{k}=\sum_{k=0}^{n} Q^{k}(I-Q), \forall n \in \mathbb{N}$
Since, $\sum_{k=0}^{\infty} Q^{k}$ exists, we obtain:

$$
\begin{align*}
(I-\mathcal{Q}) \cdot V & =(I-\mathcal{Q}) \cdot \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \mathcal{Q}^{k}=\lim _{n \rightarrow \infty}(I-\mathcal{Q}) \cdot \sum_{k=0}^{n} \mathcal{Q}^{k} \\
& =\lim _{n \rightarrow \infty}\left(\left(\sum_{k=0}^{n} \mathcal{Q}^{k}\right) \cdot(I-\mathcal{Q})\right)=\left(\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \mathcal{Q}^{k}\right) \cdot(I-\mathcal{Q}) \tag{17}\\
& =\left(\sum_{k=0}^{\infty} \mathcal{Q}^{k}\right) \cdot(I-\mathcal{Q})=V \cdot(I-\mathcal{Q}) \\
& \Rightarrow V(I-\mathcal{Q})=(I-\mathcal{Q}) \cdot V=I \Rightarrow V=(I-\mathcal{Q})^{-1}
\end{align*}
$$

Proposition

Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with state space \mathcal{S} and $x, y \in \mathcal{S}$. If x is recurrent and $x \rightarrow y$, then

- y is also recurrent, and
- $y \rightarrow x$, and $f_{x y}=f_{y x}=1$

Proof: Assume $x \neq y$. Since $x \rightarrow y$, there exists a $k \geq 1$ such that $\left(P^{k}\right)_{x y}>0$. If we had $f_{y x}<1$, then with probability $\left(1-f_{y x}\right)>0$, the Markov chain, once in state y, would never visit x at any future time. It follows that:

$$
\mathbb{P}\left(T^{x}=\infty \mid X=x\right)=\left(1-f_{x x}\right) \geq P k\left(1-f_{y x}\right)>0
$$

However, since x is recurrent, $f_{x x}=1$, and so it must be that $f_{y x}=1$. In particular, $y \rightarrow x$.

Proof continued

Since $y \rightarrow x$, there exists an $I \geq 1$ such that $P_{x y}^{\prime}>0$. We have:
$\mathbb{E}\left(V^{y}\right)=\sum_{n=1}^{\infty}\left(P^{n}\right)_{y y} \geq \sum_{m=1}^{\infty}\left(P^{\prime}\right)_{y x} \cdot\left(P^{m}\right)_{x x} \cdot\left(P^{k}\right)_{y x}=\left(P^{\prime}\right)_{y x} \cdot\left(P^{k}\right)_{y x} \cdot \sum_{m=1}^{\infty}\left(P^{m}\right)_{x x}=\infty$ and thus:

$$
\mathbb{E}_{y}\left(V^{y}\right)=\infty
$$

which implies that y is recurrent by Proposition 1.8.3. Switching the roles of x and y in the argument, yields $f_{x y}=1$. This completes the proof.

Methodology

- Model atom transitions as a discrete-time markov - chain (DTMC)

$$
\left(X_{n}\right)_{n \in \mathbb{N}}=\left(X_{1}, X_{2}, \ldots\right)
$$

Methodology

- Model atom transitions as a discrete-time markov - chain (DTMC)

$$
\left(X_{n}\right)_{n \in \mathbb{N}}=\left(X_{1}, X_{2}, \ldots\right)
$$

- Hence:

$$
(T)_{i j}=\operatorname{Pr}\left(X_{n+1}=i \mid X_{n}=j\right)
$$

Methodology

- Model atom transitions as a discrete-time markov - chain (DTMC)

$$
\left(X_{n}\right)_{n \in \mathbb{N}}=\left(X_{1}, X_{2}, \ldots\right)
$$

- Hence:

$$
(T)_{i j}=\operatorname{Pr}\left(X_{n+1}=i \mid X_{n}=j\right)
$$

- Use mathematical tool box provided by markov - chains

Classification of Markov Processes

Time space	Discrete	State Space
	Discrete-Time Markov Chain (DTMC)	Discrete-time Markov Process (DTMP)
Continuous	Continuous-Time Markov Chain (CTMC)	Continuous-time Markov Process (CTMP)

Discrete-Time Markov Chain

Acknowledgement

- Peter F. Stadler
- Thomas Gatter
- Nora Beier

UNIVERSITAT LEIPZIG

Thank you for your attention.

Bibliography

Claire L. Boulangé, Ana Luisa Neves, Julien Chilloux, Jeremy K. Nicholson, and Marc-Emmanuel Dumas. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.Genome Medicine, 8(1):42, December 2016.

[^0]: ${ }^{1}$ Introduction to stochastic processes, Gregroy F. Lawler, 2006

[^1]: ${ }^{3}$ Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013

[^2]: ${ }^{3}$ Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013

[^3]: ${ }^{4}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

[^4]: ${ }^{5}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

[^5]: ${ }^{5}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

[^6]: ${ }^{5}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

[^7]: ${ }^{5}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

[^8]: ${ }^{5}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

[^9]: ${ }^{6}$ Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021

