Modelling isotope labelling in atom transition networks

Richard Golnik

University of Leipzig

2024/02/12



Introduction & Motivation
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Figure: Metabolic development of 2-3C-Glucose via different metabolic pathways.
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Figure: Schematic depiction of a part of a metabolic network.
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Figure: Schematic depiction of a part of a metabolic network with established flux.
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Figure: Schematic depiction of a part of a metabolic network and an atom-transition network with established
flux.



Methodology

ATN with Transition Probabilities
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Figure: Schematic depiction of an ATN with transition probabilities.
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Definition (Markov Processes and Markov Chains')
Let (Q,2(,P) be a probability space and (Y, *B) a measurable space. Let S be the

state space with Q = [[S and T an index set. A stochastic process
i=0

X:QxT—=Y,teT
is called Markov Process, if and only if:
P(Xe, 1| Xew = Xny - o, Xty = X0) = P(Xt,p1 = Xnt1| Xz, = Xn),
ti<ti,Vie{l,...,n},x; €8S

which is called the Markov Property.

ntroduction to stochastic processes, Gregroy F. Lawler, 2006



Markov Chain

» S :state space, S = {G31, G32, ..
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Definition (Stochastic Matrix?)

> S :state space, S ={G31, G32,...}
> Transition probabilities: P € [0, 1]I51%IS]

n
P €[0,1]"*" is called a row-stochastic matrix, if: > p; =1,Vi e {1,...,n}.

j=1

2Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Markov Chain

> S :state space, S ={G31, G32,...}

ingle - Carbon - - .. -y
Smg‘l’rean:i:o:r(‘ir:;:m » Transition probabilities: P € [0, 1]|S|X|S‘
o @ Transition - Matrix > Markov PFOPe"tyi
1
l 00 - 0
o T\; - P= ll o 0] ]P)(th+1 [ Xt, = Xn, s Xep = X0)
: 00 1
~o e CP(X, =X = ) (2)
g I .
o @21 e @21 ti < t,'_|_1,VI € {1, ey n},XJ' S 5

Definition (Stochastic Matrix?)
n
P €[0,1]"*" is called a row-stochastic matrix, if: > p; =1,Vi e {1,...,n}.

j=1

2Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Basic computation on Markov Chains
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» 70 € [0,1]**IS]: probability distribution
» Probability of an event w € Q:

J
1 0
”l:Z”j'Pu
i=1
=70 P
m?=nt.P=x0.pP? (3)
ak=nkl.p=. . =70 pPk



Basic computation on Markov Chains

» Accumulation of labeled carbon atoms caused by constant influx of labeled
material (7°):

o
7T°°:7T0-I—|—7TO-P+7TO~Pz—{—...:Zﬂ'O-Pk
k=0

3Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013



Basic computation on Markov Chains

» Accumulation of labeled carbon atoms caused by constant influx of labeled
material (7°):

o
7T°°:7T0-I—|—7TO-P+7TO~Pz—{—...:Zﬂ'O-Pk
k=0

> p(P) £ 1= lim P" #0 = (4) is not convergent>
n—oo

3Handbook of Linear Algebra, Second Edition, Leslie Hogben, 2013



Transient states and recurrent states

Definition (Transience and Recurrence?)
Let (Xn)nen be a Markov chain with state space S, x € S and

T*=min{n>1: X, =x}

the first return time. A state x is called:
» recurrent if P(T* < oco|Xp = x) = 1.
> transient if P(T* < 00| Xp = x) < 1.
A Markov chain is recurrent (transient) if all of its states are recurrent (transient).

*Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space

Proposition (Characterization of Recurrency®)

Let (Xn)n>0 be a Markov chain with state space S and x,y € S. If x is recurrent and
x — y, then y is also recurrent.

®*Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space
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Canonical decomposition of the state space

Proposition (Characterization of Recurrency®)
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Canonical decomposition of the state space

Proposition (Characterization of Recurrency®)

Let (Xn)n>0 be a Markov chain with state space S and x,y € S. If x is recurrent and
x — y, then y is also recurrent.

> S=RUT
R T
» O is substochastic and
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Canonical decomposition of the state space

Proposition (Characterization of Recurrency®)
Let (Xn)n>0 be a Markov chain with state space S and x,y € S. If x is recurrent and
x — y, then y is also recurrent.

> S=RUT
R T
» O is substochastic and
> P R D! 0 transient
> Y R'<
| n=0
T T | Q

®*Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Canonical decomposition of the state space
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Canonical decomposition of the state space
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Lemma (Fundamental Matrix®)

Let (Xn)n>0 be a Markov chain with state space S and Q the substochastic matrix,
representing all transient states as constructed above, then the matrix

V=> Q"
n=0

is called the fundamental matrix of the Markov chain and is given by: V = (I — @)~}

» Stable solution:

7 — 0. ZQn _ 71_0(, _ Q)_l
n=0

®Dynamics of Markov Chains for Undergraduates, Ursula Porod, 2021



Reservoir Solution
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Reservoir Solution
» The quantity of labeled carbon atoms can be computed recursively via

nt*t = nf — Efflux + Influx
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Reservoir Solution
» The quantity of labeled carbon atoms can be computed recursively via

nt*t = nf — Efflux + Influx

0
n - Qji + T

f,'_
J
ri -
1

m
]j=

]

> With f; and r; being the outflux and reservoir of a compound, respectively, we

define:
A 0 ... 0
n
0 2 ... 0
C= ”
0 0 fim

'm



Reservoir Solution

» The quantity of labeled carbon atoms can be computed recursively via

it = nf — Efflux + Influx
f £
ot i t J t . 0
—”i—*‘”i+§ = nj- g+
ri —
Jj=1

m
— pt t o E: t g 0
=n; —n;-Gi+ Gj - nj-qji+m;
Jj=1



Reservoir Solution

» The quantity of labeled carbon atoms can be computed recursively via

ntt1 = nf — Efflux + Influx

m
f
S S N T
j=1" (6)

t t t 0
=n; —n;-Gi+ E Gj - nj-qji+m;

> Yielding:
nttfl=nt —pt.C+nt-C-Q+n°
=nt-(I-C+C-Q)+n° (7)

=nt(I+C-(Q-N)+7"=n" - M+7°



Reservoir Solution

» By induction we obtain

t+1

=nt - M+7°
="t M+7°% M+7°

=L M40 (T M)

t
70 MY r0 M
k=0

t+1
w0y Mk 2 297
k=0



Reservoir Solution

Lemma
M, as constructed above, is substochastic and transient. Moreover, the stable
reservoir solution can be calculated directly, via:

7®° =70, Z./\/lk =l -M)t=7"(1-9Q)t.ct
k=0

Proof: With M =1+ C-(Q — /) it follows:

o (l-M)Cc=2%(I-(+C-(Q-1)L-C
:ﬂo.(c.(/_Q))*l.C o)
=m0 (1-9)t.ct.C
:7r0-(I—Q)_1



Summary

t
» Solutions at particular timepoints: 7t = 7% . 3 Q"
k=n
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Summary

t
» Solutions at particular timepoints: 7t = 7% . 3 Q"
k=n

» Stable solution (without reservoir): 7 =70 . (/ — Q)71

t
» Reservoir solutions at particular timepoints: 7f = 70 > M”
k=n

» Stable reservoir solution: 7° =79 (/] — Q)~!.C~1!



Outlook

» Stable and timepoint isotopomer solution
» ITN - Isotopomer Transition Graph

» Modelling atom solution with continuous Markov chains[1.0em]
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Algebras and o-Algebras

Definition (Algebra and o-Algebra)

Let Q # () be non-empty set and () the power set of Q. A collection 20 C B(Q) is
called Algebra if the following properties hold:



Algebras and o-Algebras

Definition (Algebra and o-Algebra)

Let Q # () be non-empty set and () the power set of Q. A collection 20 C B(Q) is
called Algebra if the following properties hold:

> e



Algebras and o-Algebras

Definition (Algebra and o-Algebra)

Let Q # () be non-empty set and () the power set of Q. A collection 20 C B(Q) is
called Algebra if the following properties hold:

> e
> AcA=Q\Aecd



Algebras and o-Algebras

Definition (Algebra and o-Algebra)

Let Q # () be non-empty set and () the power set of Q. A collection 20 C B(Q) is
called Algebra if the following properties hold:

> e
> AcA=Q\Aecd

> Ay, . A eA= JA e
k=1



Algebras and o-Algebras

Definition (Algebra and o-Algebra)
Let Q # () be non-empty set and () the power set of Q. A collection 20 C B(Q) is
called Algebra if the following properties hold:

> DeA

> AcA=Q\Aecd

> Ay, . A eA= JA e

k=1

2l is called a o-Algebra if additionally:

> A,eAneN= JA, e

n=1



Measurable spaces and measures

Definition (Measurable space)

Let Q # 0,B(2) the power-set on Q and 2 C PB(2) a o-Algebra on Q. Then the tuple
(©,21) is called a measurable space

Definition (Measure and probability measure)

Let (£2,2() be a measurable space. A function p: 24 — [0,00] and P: 2L — [0, 1] is
called a measure and a probability measure, respectively, if the following holds

> pu(0) =0,P(0) =0
> 11, P are o-additive, i. e. for A, € A, AN Aj = 0,Vi # j the following holds:

[ (UA,,) => u(An) and P (UAn> = P(An)
n=1 n=1 n=1 n=1

> P(Q)=1
(2,2, 1) and (2,2(,P) are called a measure space and probability space, respectively.



Measurability and random variables

Definition (Measurability)

Let (X, %), (Y,B) measurable spaces. A function f : X — Y is called 2 — B
measurable, if:

{xe X |f(x)e B} = f}B)e

Definition (Random variable)

Let (Q,2(,P) be a probability space and (X, B) a measurable space. A

A — SB—measurable function:
f:Q—X

is called ¥-random variable on € or just random variable.



Stochastic Process and Markov Process

Definition (Stochastic process)

Let (Q,2(,P) be a probability space, (Y,2B) a measurable space and T an index set. A
stochastic process X is a collection of random variables: X; : Q — Y, t€ T,i. e. a
map:

X:QxT—=Y,w— Xw)

Definition (Markov process)

Let (Q,2(,P) be a probability space and (Y, *B) a measurable space. Let S be the
state space with Q = S"*1 and T an index set. A stochastic process
X:QxT—=Y,teTis called Markov Process, if and only if:

P(th+1 |th :XI'I7"'7Xt0 =Xo ) = P(th+1:Cn+l ‘th =Xn )7

which is called the Markov Property.



Markov Chains

Lemma
Consider S # () be a discrete (finite or countably infinite) set, named state space, with
n
70 € [0,1]**I5!, being a probability distribution, meaning 3. 7%(x;) = 1, and
i=0
Q = S"*1. Furthermore, let A C Q be a o - Algebra on 2 as well as:

p:SxS—[0,1] with > p(xi,x) =1,¥x € S.

x;€S
Then the function:
0 ifA=10
P:A— [07 1]7P(A) = Z 7T0(X0) ' p(X07X1) Tt p(Xn_l’Xn) else
weA

is a probability measure on 2, i. e. (Q2,P(2),P) is a probability space.



Proof of the Lemma
P:Q—10,1],P(w) = ™(x0)- (x0,x1) - - .. - (Xn_1, Xn) yields:

0 ifw=10
> P(w) else

wEA

IP’:Q[—>[O,1],IP’(A){

1. (@) = 0, nach Defintion



Proof of the Lemma
P:Q—10,1],P(w) = ™(x0)- (x0,x1) - - .. - (Xn_1, Xn) yields:

0 ifw=10
P:2A —[0,1],P(A) =
P I
w%q (w) else

1. (@) = 0, nach Defintion
2. o-Additivitat: Seien A, € A, n € N beliebig, sodass A; N A; = 0,Vi # j. Dann gilt:

p (GAn> D M i 3 Pw) L Pi P(A,)
n=1 n=1

oo n=1 weA
we U An !

n=1



Proof of the Lemma

P:Q—[0,1],P(w) = 7%(x0) (x0,x1) - - - - -

3. P(Q)=1:

:ZP

weN

=) (%

weN
X,'OES

X,'1€S

X,'OES X,'1€5

== w(x0)-1

X,'OGS

IP’:Q[—>[O,1],IP’(A){

0 xm) ..

DO

(Xn—1, Xn) yields:

0 ifw=~0
S P(w) else
weA
“p(x0,x1) .. p(Xn—1,Xn)

= Do m0R) D p(x X)L DT p(xint, X

Xin_1 )

§ p(X’n—Q’ X’n—l

X,'n_2€5



Proposition

Proposition (Markov Property)
Let (©,93(£2),P) be the probability space as defined above and (X )o<k<n the random
vector whose components are the coordinate random variables as defined above. Then

forall 0 <i<n-—1and forall xo,x1, ..., Xj+1 € S:
P(Xit1|Xo = X0, - - -, X = %) = P(Xi41 = xi) = p(xi, Xi+1)

Proof: By definition we have:

P(Xo = x0,-..,Xit1) = X;
P(Xis1|Xo = x0,. - xi = X)) = (PO(XO :0 X0 ’J;-)— X-IH)

(11)
_ (%) - p(x0,x1) - - - p(xi—1, Xi) - p(Xi Xi41)

= P\Xi, Xit+1
700) - P(0.31) .- P01, %) pLxi, xi+1)




i—1

Additionally we let: ' = {x;} X w = (w, x;), Vw € 1:[5 and obtain:

P(Xiy1 = xi41|Xi = xi) =

Jj=0

P(Xixi, Xitv1 = Xj41)
P(X, = X,')

Y. P(W) - p(xi;xit1)

_ weSi—1

P(X; = x;)

_ P(Xi = xi) - p(xi, Xi11)

P(X,' _ Xi) = p(X,-, Xi+1)

(12)



Homogenous Markov chains and stochastic matrices

Definition (Homogenous Markov Chain)

We call (Xx)o<k<n constructed above a homogeneous Markov chain of length n with
state space S, one-step transition probabilities P,,,x,y € S, and initial distribution 0.

Definition (Stochastic Matrix)
A matrix P € [0,1]"*" is called a row-stochastic matrix, if:

> pi=1vie{l,...,d}

j=t



Irreducibility of Markov Chains

Definition (Irreducibility)
Let (Xk)o<k<n be a Markov chain with state space S and x,y € S.
> x leads to y, denoted by x — y, if there exists n > 1 such that (P"),, > 0.

> x and y communicate with each other, denoted by x <+ y, if and only if x — y
and y = x.

» A Markov chain is irreducible, if for all x,y € S, we have x — y. Otherwise, we
say the Markov chain is reducible.

Lemma (Communication is an equivalence relation)
The relation <> as defined above, is an equivalence relation.
Proof:

> a and b follow directly from the definition.

» c:let x,y,z€ S with x <> y and y <+ z. Then there exists k, [, n, m with
(P)(xy) > 0,(P)fyz) > 0,(P){zy) > 0,(P){yx) > 0



Lemma (Expected value for visits)
Let (Xn)n>0 be a Markov chain with state space S and x,y € S. Then for k > 1:

P(VY > k|X = x) = i f,y*!
Proof:
P(VY > k| X =x) = P(VY =1|Xp = x)-P(VY > (k—1)|Xo = y)

=P(TY < c0|Xo =x)-P(TY < 00| X = y)k~1 (13)



Theorem
Let (Xn)n>0 be a Markov chain with state space S.

a Ify € S is recurrent, then
B(VY = colXo = y) =1
and hence
EY (V)=
Furthermore, P(VY = 00| Xy = x) = f,Vx € S.

b If y is transient, then
P(VY <oo|Xp=x)=1

and

E(VY) = by < o0

forall x € S.



Proof of the Theorem (continued)

By the previous lemma P(VY > k|Xo = x) = £, - fy’;,_l. If y recurrent
fyy = P(T* < 00|Xp = y) = 1 by definition. Then:

PV = oolXo = y) = lim P(V* = k|Xo = y)
—00

fk—l

= lim £, - vy

k—00

= lim £y -1
k—00

= lim P(Ty < oo|Xp = x)
k—ro0
=P(Ty <oo|Xp=x)=1

=fy >0=E(V) =00

(14)



Proof of the Theorem (continued)
If y is transient, so f,, = P(Ty < 0o|X0 = x) < 1. Then we obtain:
PV =o0|Xo =y) = kli_)rr;OIP’(Vy > k| Xo=y)
= lim fy -5t =0

k—o00 vy

=PV <oo|Xog=x)=1-P(V =cc[Xg=y) =1

o o (15)
Furthermore : E (VY) = ZIP (VY > k) Z U
k=1 k=1




Corollary
Corollary (Convergence of transient states)
Let (Xn)n>0 @ Markov chain with state space S. If y € S is transient, it holds:

lim (P"),, =0,Vx€ S

n—o0

1 ify=z o0
Proof: Let 1,(z) = . Since VY = 3" 1,(X,) we obtain with the
0 else n=1

Monotone Convergence Theorem:

(Zﬂy(x ) e ZE(ﬂy(xn» = i@(x = y|Xo = x)
n=1 n=1
(16)

o
- Zl(Pn)xy < o0 = nli~>n;o(Pn)Xy = 07VX c S
n=



Monotone Convergence Theorem

Theorem (Monotone Convergence Theorem)
Let (Xn)n>0 be a sequence of nonnegative random variables and X a (not necessarily
finite) random variable with

Ii_)m Xn=X almost surely
If
0< Xg < X1 <X <Ll almost surely
then

lim E(X,) = E(X)

n—oo



Substochastic Matrices

Definition
A square matrix P € [0,1]"*" is called row substochastic, if:

n
> pi=1vie{l,...,n}
j=1

and

Elke{l,...,n}:Zpkj<1
j=1



Definition
Let (Xn)n>0 be a Markov chain with state space S and Q the substochastic matrix,
representing all transient states as constructed above, then the matrix

o0
v=3a
n=0
is called the fundamental matrix of the Markov chain.

Lemma
Let (Xn)n>0 be a Markov chain with state space S and V the fundamental matrix of
the Markov chain. Then:

V=>I-Q)!



Proof of the Lemma
Proof: (I — Q) - E Qk = E Qk — Z Qk = Z QX(I — @),YneN

oo
Since, > Q¥ exists, we obtain:
k=0

n

(1-9)-V=(-2 'n"";oZQk—"m’—Q)'ZQk

k=0

e (B) v-0)- (g oo
—(ggk)(/—g)—%(/—@)

SV(I-Q)=(1-9) V=I=V=>1-Q)"!



Proposition
Let (X»)n>0 be a Markov chain with state space S and x,y € S. If x is recurrent and
x — y, then

P y is also recurrent, and
» y—x,and f,, =f, =1
Proof: Assume x # y. Since x — y,there exists a k > 1 such that (P¥),, > 0. If we

had f,, < 1, then with probability (1- fyx) > 0, the Markov chain, once in state y,
would never visit x at any future time. It follows that:

P(T* = 00X = x) = (1 — fi) > Pk(1 — f,) >0

However, since x is recurrent, f,, = 1, and so it must be that f,, = 1. In particular,
y — X.



Proof continued

Since y — x, there exists an / > 1 such that P)’(y > 0. We have:

E(VY) = i(P")yy > i(P'
n=1

m=1

mxx'('Dk)yx—( : Z'Dmxx—oo
m=1
and thus:

Ey (V) =00

which implies that y is recurrent by Proposition 1.8.3. Switching the roles of x and y
in the argument, yields f,, = 1. This completes the proof.
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Methodology

» Model atom transitions as a discrete-time markov - chain (DTMC)

(Xn)nen = (X1, X2,...)

» Hence:
(T)ij = Pr(Xp11 = i|Xn = j)

» Use mathematical tool box provided by markov - chains



Classification of Markov Processes

Time space State Space
Discrete \ Continuous

Discrete Discrete-Time  Markov | Discrete-time Markov
Chain (DTMC) Process (DTMP)

Continuous Continuous-Time Continuous-time Markov
Markov Chain (CTMC) | Process (CTMP)




Discrete-Time Markov Chain

DA
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