CRISPR/Cas9 gRNA design for base editing (Keeping up with the CRISPR Tsunami)

Jan Gorodkin

Center for non-coding RNA in Technology and Health Department Veterinary and Animal Science University of Copenhagen

39th TBI Winterseminar in Bled 2024

(Artist: David Deen)

CRISPR - Cas9

CRISPR: Clustered, Regularly Interspaced, Short Palindromic Repeats

- Produces double strand breaks (DSBs) on DNA
- A single guide RNA (sgRNAs) drives the spCas9 endonuclease enzyme
 - 20nt complementary sequence
 - Adjacent to the protospacer adjacent motif (PAM) site

(Belhke, Genetic Engineering & Biotechnology News, 2016)

gRNA design

gRNA design

CRISPRon data for training and testing

Creating training, validation and independent test set of the in total 23,902 gRNAs ‡ .

- 6 fold; one held out as independent test set
- 5-fold cross-validation
- gRNAs with up to 4nt differences were grouped together
- gRNAs > 4nt to other gRNAs were distributed randomly over the folds

[‡]Xiang[¶], Corsi[¶], Anthon[¶], *et al.*, Nat Comm, 2021 ; [†]Pan[¶], *et al.*,. Nat Comm, 2022

CRISPRon network

Deep network for gRNA efficiency prediction[‡]

 ΔG_B developed in the *CRISPRoff* program, is the resulting gRNA:DNA binding energy taking gRNA self-folding and DNA opening energy into account[†].

[‡]Xiang[¶], Corsi[¶], Anthon[¶], *et al.*, Nat Comm, 2021 [†]Alkan, *et al.*, Genome Biol, 2018.

Giulia Corsi RTH

Christian Anthon RTH

gRNA context matters

Cas9 gRNAs work in a constrained binding energy interval while being PAM context dependent †

[†]Corsi[¶], Qu[¶] et al., Nat Comm, 2022

CRISPRon performance

Evaluation on external data sets is critically important[‡]

[‡]Corsi et al., Letter to the editor, Bioinformatics, 2023

- DeepCRISTL[†]: novel set of models
 - pre-trained on large-scale datasets (surrogate gRNAs)
 - refined by transfer learning on smaller datasets (non-surrogates)

Elkayam and Orenstein, Bioinformatics, 2022.

- DeepCRISTL[†]: novel set of models
 - pre-trained on large-scale datasets (surrogate gRNAs)
 - refined by transfer learning on smaller datasets (non-surrogates)

Elkayam and Orenstein, Bioinformatics, 2022.

- DeepCRISTL[†]: novel set of models
 - pre-trained on large-scale datasets (surrogate gRNAs)
 - refined by transfer learning on smaller datasets (non-surrogates)

Elkayam and Orenstein, Bioinformatics, 2022.

CRISPRon perform overall better on independent data than $DeepCRISTL^{\dagger}$

10 models on 10 data sets: 63 of 100 no difference; CRISPRon best 32 of 100; DeepCRISTL best 5 of 100

[†]Corsi, Bioinformatics, 2023.

Base editing

Precise genome editing by directly changing a targeted base

(Illustration by SeHee Park: https://biotech.ucdavis.edu/news/dna-base-editors-genome-editing)

Pros: no double-strand breaks / no donor DNA template required **Cons:** unwanted concurrent mutations

Base editing data

In complement to published data, we generated in house data

Base editing window

Bystander bases are edited as well

Base editing outcome

Two numbers: gRNA editing efficiency and outcome frequency

Example (ABE):						
	upstream	gRNA	1	PAM	downstream	
Target sequence	TATCTCCAGG	GGAGGTGGTA	CGGCTGTAGC	GGG	GGAC	# reads measured by sequencing
i						
Outcome1 (WT):	TATCTCCAGG	GGAGGTGGTA	CGGCTGTAGC	GGG	GGAC	r1 -
Outcome2:	TATCTCCAGG	GGGGGGGGGGA	CGGCTGTAGC	GGG	GGAC	r2
Outcome3:	TATCTCCAGG	GGAGGTGGTG	CGGCTGTAGC	GGG	GGAC	r3
Outcome4:	TATCTCCAGG	GG <mark>GGGTGGTG</mark>	CGGCTGTAGC	GGG	GGAC	r4
total = r1 + r2 + r3 + r						
gPNA editing efficiency = # total reads of all sequences with intended target nucleotide transitions						$\frac{1}{1}$ tions $\frac{r^2+r^3+r^4}{r^4}$
grave euting enterency =		# total reads				total
# reads of specific base-edited outcome sequence r^2						
outcome frequency = $\frac{1}{1000}$ + total reads = $\frac{1}{1000}$ = $\frac{1}{1000}$						
		# total	Teaus		totai	
σ PNA aditing afficiency – \sum adited outcome frequency						
$\frac{1}{2}$ grave entries of $\frac{1}{2}$ entred outcome nequency						

Base editing data

gRNA edtiting efficiencies

Data sources: our dataset: Sun *et al.*, (in prep); Song training and test: Song, et al., Nat. Biotechnol., 2020; Arbab dataset: Arbab, *et al.*, Cell, 2020; Marquart test set: Marquart, et al., Nat. Comm., 2021

Base editing data

Current prediction methods evaluate the performance individually of gRNA efficiency and outcome frequency.

Here: evaluate the numbers jointly with a fused correlation coefficient[†]

Gorodkin, Comput Chem, 2004.

Extending Pearson's correlation coefficient

Consider two $N \times K$ tables: \underline{X} and \underline{Y} . Define[†]

$$COV(\underline{X},\underline{Y}) = \sum_{k=1}^{K} w_k COV(\underline{X}_k,\underline{Y}_k) = \frac{1}{K} \sum_{n=1}^{N} \sum_{k=1}^{K} (X_{nk} - \overline{X}_k) (Y_{nk} - \overline{Y}_k)$$

where $\overline{X}_k = \frac{1}{N} \sum_{n=1}^{N} X_{nk}$ and \overline{Y}_k are the respective means of column *k*. Use ("prior") $w_k = 1/K$.

$$R_{\mathcal{K}} = \frac{COV(\underline{X}, \underline{Y})}{\sqrt{COV(\underline{X}, \underline{X})COV(\underline{Y}, \underline{Y})}}$$

^TGorodkin, Comput Chem, 2004.

The Discrete version of R_K

The $K \times K$ confusion matrix \underline{C}^{\dagger}

$$R_{\mathcal{K}} = \frac{N \, Tr(\underline{\underline{C}}) - \sum_{kl} \underline{\underline{\tilde{C}}}_{k} \underline{\underline{\hat{C}}}_{l}}{\sqrt{N^{2} - \sum_{kl} \underline{\underline{\tilde{C}}}_{k} (\underline{\underline{\hat{C}}}^{\top})_{l}} \sqrt{N^{2} - \sum_{kl} (\underline{\underline{\tilde{C}}}^{\top})_{k} \underline{\underline{\hat{C}}}_{l}}}$$

•
$$\underline{\tilde{C}}_k$$
 the *k*th row of \underline{C} .

- $\underline{\hat{C}}_{l}$ the *l*th column of \underline{C} .
- $\underline{\underline{C}}^{T}$ is $\underline{\underline{C}}$ transposed.

Gorodkin, Comput Chem, 2004.

The Rank version of R_K

Using ranks for *k* vectors each with *n* numbers. Equivantly for the distance $d_{nk} = (x_{nk} - y_{nk})$ one can obtain[†]

$$\rho_K = 1 - \frac{1}{K} \sum_{k=1}^{K} \frac{6 \sum_{n=1}^{N} d_{nk}^2}{N(N^2 - 1)}$$

With ties (two or more variables with the same rank) we use the full version.

^TSun & Gorodkin (in prep)

CRISPRon-ABE data for training and testing

Our set is matched into the splits as for CRISPRon[‡].

- 6 fold; same fold as independent test set
- Same 5-fold cross-validation for training
- gRNAs with up to 4nt differences were grouped together when adding new datasets
- gRNAs > 4nt to other gRNAs were distributed randomly over the folds

Ying Sun RTH

[‡]Xiang[¶], Corsi[¶], Anthon[¶], *et al.*, Nat Comm, 2021

CRISPRon-ABE deep network

Deep network extended on the one for CRISPRon[‡]

Editing with indicating outcome; CRISPRon predictions; Binding energy features Data set indication

[‡]Xiang[¶], Corsi[¶], Anthon[¶], *et al.*, Nat Comm, 2021

CRISPRon-ABE performance

CRISPRon-CBE performance

CRISPR tools at RTH

CRISPR

Webservers for CRISPR Cas9 on- and off-target predictions.

CRISPRon

State of the art on-target efficiency predictions for CRISPR-Cas9 based on deep learning utilizing the binding energy model developed for CRISPRoff.

Try the CRISPRon webserver for on-target effiency prediction.

CRISPRroots

Computational pipeline for the analysis of RNA-seq data from CRISPR/Cas9 edited and control cells. The pipeline offers on-target edit verification and detection of possible off-targets affecting the transcripome.

Download the CRISPRroots pipeline here.

CRISPRoff

PRoff

Off-target predictions for CRISPR-Cas9 based on an energy model for the RNA-DNA duplex binding. The model out-performs machine learning models on existing off-target data.

Try the <u>CRISPRoff webserver</u> to predict CRISPR-Cas9 specificity and off-targets.

https://rth.dk/resources/crispr/

CRISPR CRISPRon

CRISPRoff

CRISPRroots

CRISPR course

Conclusions and perspectives

- CRISPR data is crucial to make good design models
- More is desirable
- Evaluation simultaneous on gRNA efficiency and outcome frequency
- Evaluation on external data sets (although data sets are diverse)
- Deep learning with flagging specific data sets
- Advancing base editing prediction

Acknowledgements

Involved team members @ UCPH: Extern

- Ying Sun
- Christian Anthon
- Giulia Corsi (Alumni)
- Ferhat Alkan (Alumni)
- Adrian Geissler
- Dhouha Grissa
- Dhvani Vora
- Xueer Han
- Wenhao Gao
- Ziyi Sheng
- Jakob H. Havgaard
- Stefan E. Seemann

Funding:

- Innovation Fund Denmark
- Danish Research Councils
- Danish Center for Scientific Computing / DeiC
- Novo Nordisk Foundation

External collaborators:

- Yonglun Luo + team, Lars Bolund Institute & University of Aarhus
- Kunli Qu Lars Bolund Institute
- Xiaoguang Pan, Lars Bolund Institute
- Lars Juhl Jensen, CPR, UCPH

Web servers and software: http://rth.dk/resources http://rth.dk/resources/crispr

Open positions: PhD position available Postdoc (to be announced shortly) Contact me (gorodkin@rth.dk) for further info.