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Basics
All networks N = (V,E) considered here are

1. DAGs with a single root
2. phylogenetic (= no indegree 1 and outdegree 1 vertices)
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hybrid-vertex = • / leaf = outdegree 0

(In)comparable vertices
u�N v if v is an ancestor of u, i.e., there is a directed path from v to u.
u and v are �N -comparable if u�N v or v�N u
Otherwise, u and v are �N -incomparable
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Clustering systems
A clustering system on X is a set C ⊆ 2X \{ /0} such that X ∈ C and {x} ∈ C for all x ∈ X.

For all N = (V,E), there is a unique clustering system

CN := {C(v) | v ∈ V}
where C(v) denotes the set of leaves “below” v.
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A clustering system on X is a set C ⊆ 2X \{ /0} such that X ∈ C and {x} ∈ C for all x ∈ X.

For all N = (V,E), there is a unique clustering system

CN := {C(v) | v ∈ V}
where C(v) denotes the set of leaves “below” v.

Folklore (Trees):
• C,C′ ∈ C overlap, if C∩C′ /∈ {C,C′, /0}.

A clustering system is a hierarchy if it does not contain pairwise overlapping sets.

• There is a 1-to-1 correspondence between rooted phylogenetic trees and hierarchies.
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For all N = (V,E), there is a unique clustering system

CN := {C(v) | v ∈ V}
where C(v) denotes the set of leaves “below” v.

Observations about networks:
• CN is usually not a hierarchy for general networks

• No 1-to-1 correspondence between networks and clustering systems.
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For all N = (V,E), there is a unique clustering system

CN := {C(v) | v ∈ V}
where C(v) denotes the set of leaves “below” v.

Central Questions: Given C .
• When is there a network N of a given type such that C = CN?

type = tree, level-k, binary, galled tree, tree-child, tree-based, regular, normal, . . .

• Which type of networks are uniquely determined by CN?

Let us try to answer some of the questions for level-1 networks.
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Level-k networks

A block B in a network is a maximal biconnected subgraph.

A network N is level-k if each block B in N contains ≤ k hybrid-vertices
(distinct from root ρB of B).

z

x y

zx y zx y
...

...level-0 = tree level-1 level-2
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Level-1 Networks
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Level-1 not Level-1

In trees T: u�T v ⇐⇒ C(u)⊆ C(v)

In networks N: u�N v =⇒ C(u)⊆ C(v) (converse not true in general)

Hence, if C(u) and C(v) overlap or are disjoint, then u and v are �N -incomparable in N

Lemma (H., Schaller, Stadler, 2023)
In level-1 networks N: u and v are �N -incomparable in N ⇐⇒ C(u)∩C(v) ∈ { /0,C(hB)} where hB 6= u,v is the

unique hybrid in block B that contains u and v.
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Property (L)
If C(u) overlaps with C(v), then C(u)∩C(v) = C(hB) with B being the block containing u and v.
[this property cannot be observed when just looking at CN !]

A clustering system C satisfies property (L) if
C∩C1 = C∩C2 for all C,C1,C2 ∈ C where C overlaps both C1 and C2.

u wv
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{a,b,c} {b,c,d}

{b,c}

{b,c,e}

b

a e

c

d

no property (L) property (L)

Lemma (H., Schaller, Stadler, 2023)
For all level-1 networks N, the set CN satisfies property (L).
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Closed clustering systems

A clustering system C is closed if A∩B ∈ C for all A,B ∈ C with A∩B 6= /0.
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Lemma (H., Schaller, Stadler, 2023)
For level-1 networks N, the set CN is always closed.
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Characterization for level-1 Networks

A clustering system C . . .

. . . is closed if A∩B ∈ C for all A,B ∈ C with A∩B 6= /0.

. . . satisfies property (L) if C∩C1 = C∩C2 for all C,C1,C2 ∈ C where C overlaps both C1 and C2.

Theorem (H., Schaller, Stadler, 2023)
For C , there is a level-1 network N with CN = C ⇐⇒ C is closed and satisfies (L).

Recognition of such C and reconstruction of such a level-1 network can be done in polynomial time.
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Uniqueness Results
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In general, several different level-1 networks may represent the same C
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Other types of networks . . .

tree

galled hierarchynormal quasi-binary level-1

(PCC), closed

shortcut-free phylogenetic

binary

quasi-binary

(PCC)

(CL)

separated

conventional

no outdegree 1 tree-child

tree-based

level-1

strong lca (L) (N3O)

least-resolved

lca

closed

weak hierarchy

(2-Inc)

paired hierarchy

phyl. tree

regular

cluster phyl. level-1

semi-regular

binary level-1

The latter results and plenty of other characterizations for dozens of other network types can be found in
Hellmuth, Stadler, Schaller, Clustering Systems of Phylogenetic Networks, Theory in Biosciences (142), 301-358, 2023
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The initial motivation to investigate the clustering systems of networks:

• lack of results in literature

• we wanted to understand in more detail inference of horizontal gene transfer and orthology

Given a relationship R that can be repre-
sented by trees T
• Clustering system of T is determined

by subgraphs (modules) of R

How are subgraphs in R related to clusters in N ?

• Colors of pairwise lca’s determine
relationship

How are networks characterized with

pairwise-lca-properties?

• Noise in the data or NON-tree-like
evolution =⇒ cannot expect trees !

A first starting point is provided by

Theorem (Shanavas, Changat, H., Stadler, 2024)
For C , there is a network N with C = CN and pairwise lca-property
⇐⇒ CN is pre-binary, i.e., there is a unique incl.-min. cluster C ∈ C such that {x,y} ⊆ C for all x,y ∈ L(N)

Shanavas, Changat, Hellmuth, Stadler Unique Least Common Ancestors and Clusters in Directed Acyclic Graphs, LNCS vol 14508, 2024
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Uniqueness Results
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We obtain uniqueness for mild restrictions!

Theorem
Let C be a closed clustering system that satisfies (L). Then, there is a unique shortcut-free level-1 network N
with CN = C that satisfies precisely one condition:
• N contains no vertex v with outdegree 1 (=Hasse diagram)
• every leaf in N has indegree 1 and all vertices v with outdegree 1 are adjacent to leaves.
• every hybrid in N has outdegree 1 (thus all leaves have indegree 1).
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Further results
Galled tree = level-1 network where all non-trivial blocks correspond to “undirected cycles”

Theorem
There is a galled tree N with CN = C ⇐⇒ C is closed and satisfies Property (L) and
does not contain three distinct pairwise overlapping clusters.

Binary network = network where all non-hybrids v is either a leaf or has outdeg(v) = 2, and every hybrid v satisfies indeg(v) = 2
and outdeg(v) = 1.

Theorem
There is a binary level-1 network N with CN = C ⇐⇒ C is closed and satisfies Property (L) and
for all clusters C ∈ C , there are at most two inclusion-maximal clusters A,B ∈ C with A,B ( C and at most two
inclusion-minimal clusters A,B ∈ C with C ( A,B.

A clustering system C is compatible w.r.t. N if C ⊆ CN .

Theorem
C is compatible w.r.t. a level-1 network N ⇐⇒ C is satisfies Property (L).

In this case, compute A∩B for all overlapping A,B ∈ C and add it to C if their intersection is not present. (can be done in
polynomial time)
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pre-binary clustering system but not pairwise lca-property
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