

Clustering Systems of Phylogenetic Networks

Marc Hellmuth

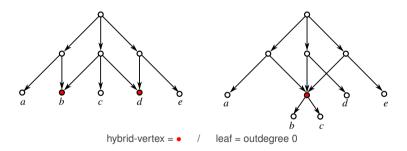
Department of Mathematics Faculty of Science Stockholm University

TBI Winterseminar, 2024

Basics

All networks N = (V, E) considered here are

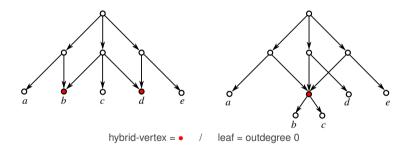
- 1. DAGs with a single root
- 2. phylogenetic (= no indegree 1 and outdegree 1 vertices)



Basics

All networks N = (V, E) considered here are

- 1. DAGs with a single root
- 2. phylogenetic (= no indegree 1 and outdegree 1 vertices)



(In)comparable vertices

 $u \leq_N v$ if v is an ancestor of u, i.e., there is a directed path from v to u. u and v are \leq_N -comparable if $u \leq_N v$ or $v \leq_N u$ Otherwise, u and v are \leq_N -incomparable

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

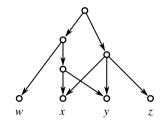
For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

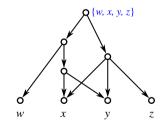
 $\mathscr{C}_N := \{C(v) \mid v \in V\}$



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

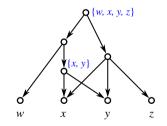
 $\mathscr{C}_N := \{C(v) \mid v \in V\}$



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

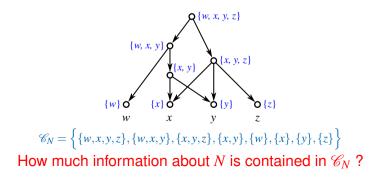
 $\mathscr{C}_N := \{C(v) \mid v \in V\}$



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

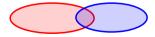
 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Folklore (Trees):

• $C, C' \in \mathscr{C}$ overlap, if $C \cap C' \notin \{C, C', \emptyset\}$.

A clustering system is a hierarchy if it does not contain pairwise overlapping sets.



OVERLAP

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

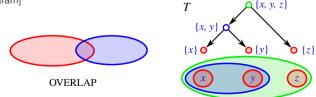
where C(v) denotes the set of leaves "below" v.

Folklore (Trees):

• $C, C' \in \mathscr{C}$ overlap, if $C \cap C' \notin \{C, C', \emptyset\}$.

A clustering system is a hierarchy if it does not contain pairwise overlapping sets.

• There is a 1-to-1 correspondence between rooted phylogenetic trees and hierarchies. [keyword: Hasse-diagram]



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

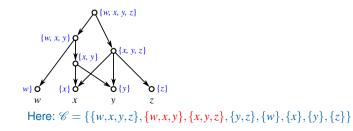
For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Observations about networks:

• \mathscr{C}_N is usually *not* a hierarchy for general networks



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

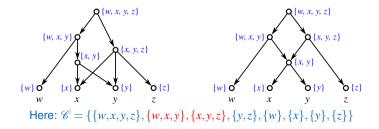
For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Observations about networks:

• \mathscr{C}_N is usually *not* a hierarchy for general networks



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

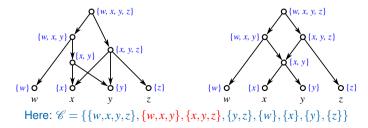
For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Observations about networks:

- \mathscr{C}_N is usually *not* a hierarchy for general networks
- No 1-to-1 correspondence between networks and clustering systems.



A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Central Questions: Given %.

• When is there a network *N* of a given type such that $\mathscr{C} = \mathscr{C}_N$?

type = tree, level-k, binary, galled tree, tree-child, tree-based, regular, normal, ...

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Central Questions: Given %.

- When is there a network N of a given type such that C = CN?
 type = tree, level-k, binary, galled tree, tree-child, tree-based, regular, normal, ...
- Which type of networks are uniquely determined by \mathscr{C}_N ?

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Central Questions: Given %.

- When is there a network N of a given type such that C = CN?
 type = tree, level-k, binary, galled tree, tree-child, tree-based, regular, normal, ...
- Which type of networks are uniquely determined by \mathscr{C}_N ?

A clustering system on *X* is a set $\mathscr{C} \subseteq 2^X \setminus \{\emptyset\}$ such that $X \in \mathscr{C}$ and $\{x\} \in \mathscr{C}$ for all $x \in X$.

For all N = (V, E), there is a *unique* clustering system

 $\mathscr{C}_N := \{C(v) \mid v \in V\}$

where C(v) denotes the set of leaves "below" v.

Central Questions: Given %.

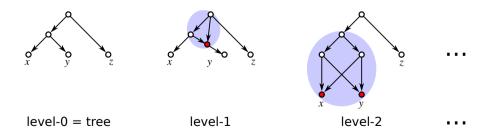
- When is there a network N of a given type such that C = CN?
 type = tree, level-k, binary, galled tree, tree-child, tree-based, regular, normal, ...
- Which type of networks are uniquely determined by \mathscr{C}_N ?

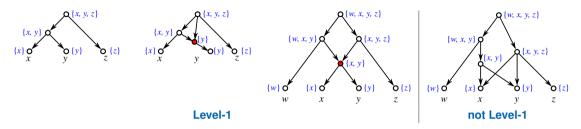
Let us try to answer some of the questions for level-1 networks.

Level-k networks

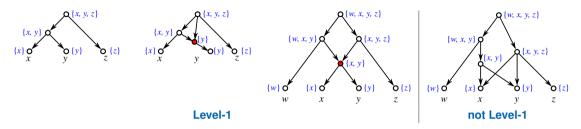
A **block** *B* in a network is a maximal biconnected subgraph.

A network *N* is **level-***k* if each block *B* in *N* contains $\leq k$ hybrid-vertices (distinct from root ρ_B of *B*).

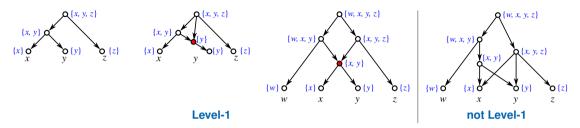




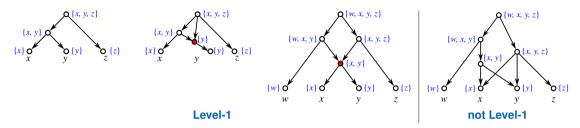
In trees *T*: $u \preceq_T v \iff C(u) \subseteq C(v)$



In trees *T*: $u \preceq_T v \iff C(u) \subseteq C(v)$



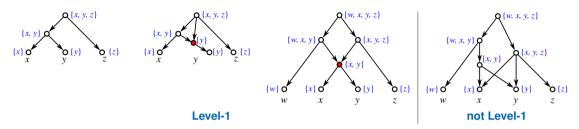
In trees *T*: $u \preceq_T v \iff C(u) \subseteq C(v)$ In networks *N*: $u \preceq_N v \implies C(u) \subseteq C(v)$ (converse not true in general)



In trees *T*: $u \leq_T v \iff C(u) \subseteq C(v)$

In networks *N*: $u \leq_N v \implies C(u) \subseteq C(v)$ (converse not true in general)

Hence, if C(u) and C(v) overlap or are disjoint, then u and v are \leq_N -incomparable in N



In trees *T*: $u \preceq_T v \iff C(u) \subseteq C(v)$

In networks N: $u \leq_N v \implies C(u) \subseteq C(v)$ (converse not true in general)

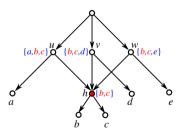
Hence, if C(u) and C(v) overlap or are disjoint, then u and v are \leq_N -incomparable in N

Lemma (H., Schaller, Stadler, 2023)

In level-1 networks N: u and v are \leq_N -incomparable in $N \iff C(u) \cap C(v) \in \{\emptyset, C(h_B)\}$ where $h_B \neq u, v$ is the unique hybrid in block B that contains u and v.

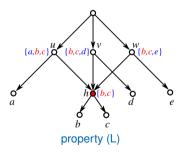
If C(u) overlaps with C(v), then $C(u) \cap C(v) = C(h_B)$ with *B* being the block containing *u* and *v*.

[this property cannot be observed when just looking at \mathscr{C}_N !]



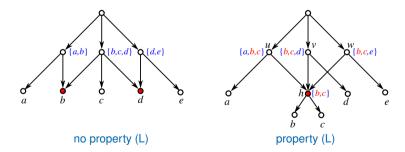
If C(u) overlaps with C(v), then $C(u) \cap C(v) = C(h_B)$ with *B* being the block containing *u* and *v*. [this property cannot be observed when just looking at \mathscr{C}_N !]

A clustering system \mathscr{C} satisfies **property (L)** if $C \cap C_1 = C \cap C_2$ for all $C, C_1, C_2 \in \mathscr{C}$ where *C* overlaps both C_1 and C_2 .



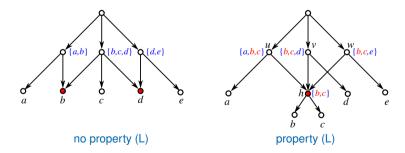
If C(u) overlaps with C(v), then $C(u) \cap C(v) = C(h_B)$ with *B* being the block containing *u* and *v*. [this property cannot be observed when just looking at \mathscr{C}_N !]

A clustering system \mathscr{C} satisfies **property (L)** if $C \cap C_1 = C \cap C_2$ for all $C, C_1, C_2 \in \mathscr{C}$ where *C* overlaps both C_1 and C_2 .



If C(u) overlaps with C(v), then $C(u) \cap C(v) = C(h_B)$ with *B* being the block containing *u* and *v*. [this property cannot be observed when just looking at \mathscr{C}_N !]

A clustering system \mathscr{C} satisfies **property (L)** if $C \cap C_1 = C \cap C_2$ for all $C, C_1, C_2 \in \mathscr{C}$ where *C* overlaps both C_1 and C_2 .



Lemma (H., Schaller, Stadler, 2023)

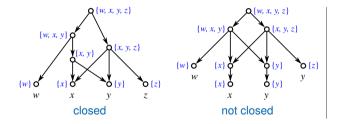
For all level-1 networks N, the set \mathcal{C}_N satisfies property (L).

Closed clustering systems

A clustering system \mathscr{C} is **closed** if $A \cap B \in \mathscr{C}$ for all $A, B \in \mathscr{C}$ with $A \cap B \neq \emptyset$.

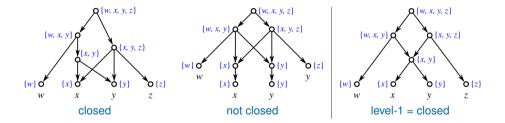
Closed clustering systems

A clustering system \mathscr{C} is **closed** if $A \cap B \in \mathscr{C}$ for all $A, B \in \mathscr{C}$ with $A \cap B \neq \emptyset$.



Closed clustering systems

A clustering system \mathscr{C} is **closed** if $A \cap B \in \mathscr{C}$ for all $A, B \in \mathscr{C}$ with $A \cap B \neq \emptyset$.



Lemma (H., Schaller, Stadler, 2023)

For level-1 networks N, the set \mathscr{C}_N is always closed.

Characterization for level-1 Networks

A clustering system \mathscr{C} ...

... is closed if $A \cap B \in \mathscr{C}$ for all $A, B \in \mathscr{C}$ with $A \cap B \neq \emptyset$.

... satisfies property (L) if $C \cap C_1 = C \cap C_2$ for all $C, C_1, C_2 \in \mathscr{C}$ where C overlaps both C_1 and C_2 .

Characterization for level-1 Networks

A clustering system \mathscr{C} ...

- ... is **closed** if $A \cap B \in \mathscr{C}$ for all $A, B \in \mathscr{C}$ with $A \cap B \neq \emptyset$.
- ... satisfies property (L) if $C \cap C_1 = C \cap C_2$ for all $C, C_1, C_2 \in \mathscr{C}$ where C overlaps both C_1 and C_2 .

Theorem (H., Schaller, Stadler, 2023)

For \mathscr{C} , there is a level-1 network N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is closed and satisfies (L).

Characterization for level-1 Networks

A clustering system \mathscr{C} ...

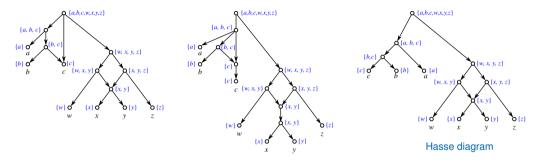
- ... is **closed** if $A \cap B \in \mathscr{C}$ for all $A, B \in \mathscr{C}$ with $A \cap B \neq \emptyset$.
- ... satisfies property (L) if $C \cap C_1 = C \cap C_2$ for all $C, C_1, C_2 \in \mathscr{C}$ where C overlaps both C_1 and C_2 .

Theorem (H., Schaller, Stadler, 2023)

For \mathscr{C} , there is a level-1 network N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is closed and satisfies (L).

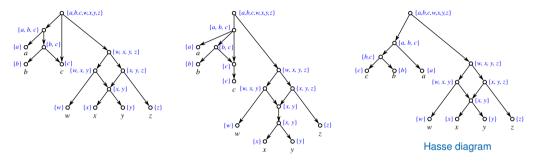
Recognition of such \mathscr{C} and reconstruction of such a level-1 network can be done in polynomial time.

Uniqueness Results



In general, several different level-1 networks may represent the same ${\mathscr C}$

Uniqueness Results

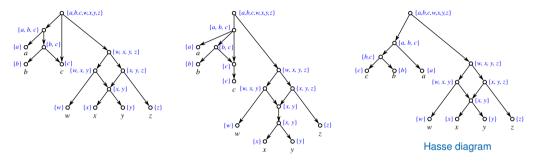


In general, several different level-1 networks may represent the same ${\mathscr C}$

Proposition (H., Schaller, Stadler, 2023)

Let \mathscr{C} be a closed clustering system that satisfies (L). Then, the Hasse-diagram of \mathscr{C} is the unique least-resolved level-1 network N with $\mathscr{C}_N = \mathscr{C}$.

Uniqueness Results



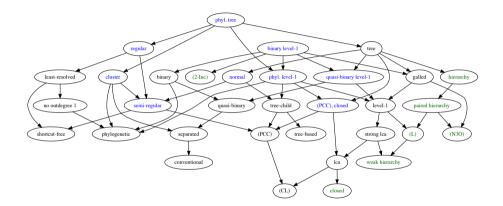
In general, several different level-1 networks may represent the same ${\mathscr C}$

Proposition (H., Schaller, Stadler, 2023)

Let \mathscr{C} be a closed clustering system that satisfies (L). Then, the Hasse-diagram of \mathscr{C} is the unique least-resolved level-1 network N with $\mathscr{C}_N = \mathscr{C}$.

Every level-1 network N is a refinement (=adding shortcuts + expand vertices) of the Hasse-diagram of \mathscr{C}_N .

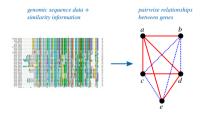
Other types of networks ...



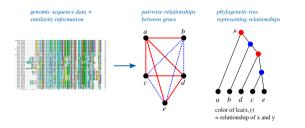
The latter results and plenty of other characterizations for dozens of other network types can be found in *Hellmuth, Stadler, Schaller, Clustering Systems of Phylogenetic Networks, Theory in Biosciences (142), 301-358, 2023*

- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology

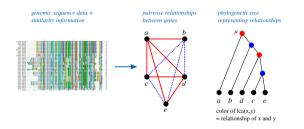
- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



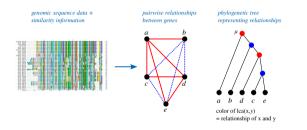
- lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



- lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



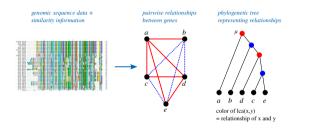
- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



Given a relationship R that can be represented by trees T

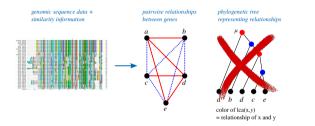
• Clustering system of *T* is determined by subgraphs (modules) of *R*

- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



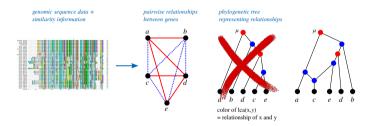
- Clustering system of *T* is determined by subgraphs (modules) of *R*
- Colors of pairwise Ica's determine relationship

- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



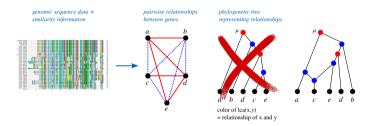
- Clustering system of *T* is determined by subgraphs (modules) of *R*
- Colors of pairwise Ica's determine relationship
- Noise in the data or NON-tree-like evolution ⇒ cannot expect trees !

- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



- Clustering system of *T* is determined by subgraphs (modules) of *R*
- Colors of pairwise Ica's determine relationship
- Noise in the data or NON-tree-like evolution ⇒ cannot expect trees !

- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



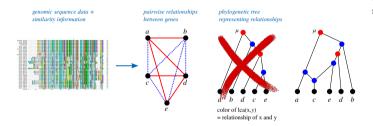
Given a relationship R that can be represented by trees T

• Clustering system of *T* is determined by subgraphs (modules) of *R*

How are subgraphs in R related to clusters in N?

- Colors of pairwise Ica's determine relationship
- Noise in the data or NON-tree-like evolution ⇒ cannot expect trees !

- · lack of results in literature
- we wanted to understand in more detail inference of horizontal gene transfer and orthology



Given a relationship R that can be represented by trees T

• Clustering system of *T* is determined by subgraphs (modules) of *R*

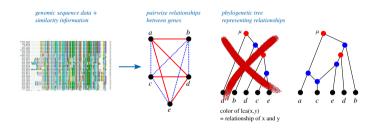
How are subgraphs in R related to clusters in N?

• Colors of pairwise Ica's determine relationship

How are networks characterized with pairwise-Ica-properties?

 Noise in the data or NON-tree-like evolution ⇒ cannot expect trees !

- lack of results in literature
- · we wanted to understand in more detail inference of horizontal gene transfer and orthology



Given a relationship R that can be represented by trees T

• Clustering system of *T* is determined by subgraphs (modules) of *R*

How are subgraphs in R related to clusters in N ?

• Colors of pairwise Ica's determine relationship

How are networks characterized with pairwise-Ica-properties?

 Noise in the data or NON-tree-like evolution ⇒ cannot expect trees !

A first starting point is provided by

Theorem (Shanavas, Changat, H., Stadler, 2024)

For \mathscr{C} , there is a network N with $\mathscr{C} = \mathscr{C}_N$ and pairwise lca-property $\iff \mathscr{C}_N$ is pre-binary, i.e., there is a unique incl.-min. cluster $C \in \mathscr{C}$ such that $\{x, y\} \subseteq C$ for all $x, y \in L(N)$

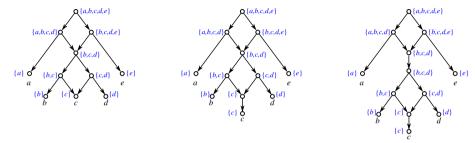
Shanavas, Changat, Hellmuth, Stadler Unique Least Common Ancestors and Clusters in Directed Acyclic Graphs, LNCS vol 14508, 2024

- David Schaller (Biontech, GER)
- Peter F. Stadler (Uni Leipzig, GER)
- Ameera Vaheeda Shanavas (Uni Kerala, IND)
- Manoj Changa (Uni Kerala, IND)
- Anna Lindeberg (Uni Stockholm, SWE)

- David Schaller (Biontech, GER)
- Peter F. Stadler (Uni Leipzig, GER)
- Ameera Vaheeda Shanavas (Uni Kerala, IND)
- Manoj Changa (Uni Kerala, IND)
- Anna Lindeberg (Uni Stockholm, SWE)

Thanks!

Uniqueness Results



We obtain uniqueness for mild restrictions!

Theorem

Let \mathscr{C} be a closed clustering system that satisfies (L). Then, there is a unique shortcut-free level-1 network N with $\mathscr{C}_N = \mathscr{C}$ that satisfies precisely one condition:

- *N* contains no vertex *v* with outdegree 1 (=Hasse diagram)
- every leaf in N has indegree 1 and all vertices v with outdegree 1 are adjacent to leaves.
- every hybrid in *N* has outdegree 1 (thus all leaves have indegree 1).

Galled tree = level-1 network where all non-trivial blocks correspond to "undirected cycles"

Galled tree = level-1 network where all non-trivial blocks correspond to "undirected cycles"

Theorem

There is a galled tree N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and does not contain three distinct pairwise overlapping clusters.

Galled tree = level-1 network where all non-trivial blocks correspond to "undirected cycles"

Theorem

There is a galled tree N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and does not contain three distinct pairwise overlapping clusters.

Binary network = network where all non-hybrids v is either a leaf or has outdeg(v) = 2, and every hybrid v satisfies indeg(v) = 2 and outdeg(v) = 1.

Galled tree = level-1 network where all non-trivial blocks correspond to "undirected cycles"

Theorem

There is a galled tree N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and does not contain three distinct pairwise overlapping clusters.

Binary network = network where all non-hybrids v is either a leaf or has outdeg(v) = 2, and every hybrid v satisfies indeg(v) = 2 and outdeg(v) = 1.

Theorem

There is a binary level-1 network N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and for all clusters $C \in \mathscr{C}$, there are at most two inclusion-maximal clusters $A, B \in \mathscr{C}$ with $A, B \subsetneq C$ and at most two inclusion-minimal clusters $A, B \in \mathscr{C}$ with $C \subsetneq A, B$.

Galled tree = level-1 network where all non-trivial blocks correspond to "undirected cycles"

Theorem

There is a galled tree N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and does not contain three distinct pairwise overlapping clusters.

Binary network = network where all non-hybrids v is either a leaf or has outdeg(v) = 2, and every hybrid v satisfies indeg(v) = 2 and outdeg(v) = 1.

Theorem

There is a binary level-1 network N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and for all clusters $C \in \mathscr{C}$, there are at most two inclusion-maximal clusters $A, B \in \mathscr{C}$ with $A, B \subsetneq C$ and at most two inclusion-minimal clusters $A, B \in \mathscr{C}$ with $C \subsetneq A, B$.

A clustering system \mathscr{C} is compatible w.r.t. *N* if $\mathscr{C} \subseteq \mathscr{C}_N$.

Galled tree = level-1 network where all non-trivial blocks correspond to "undirected cycles"

Theorem

There is a galled tree N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and does not contain three distinct pairwise overlapping clusters.

Binary network = network where all non-hybrids v is either a leaf or has outdeg(v) = 2, and every hybrid v satisfies indeg(v) = 2 and outdeg(v) = 1.

Theorem

There is a binary level-1 network N with $\mathscr{C}_N = \mathscr{C} \iff \mathscr{C}$ is **closed** and satisfies **Property (L)** and for all clusters $C \in \mathscr{C}$, there are at most two inclusion-maximal clusters $A, B \in \mathscr{C}$ with $A, B \subsetneq C$ and at most two inclusion-minimal clusters $A, B \in \mathscr{C}$ with $C \subsetneq A, B$.

A clustering system \mathscr{C} is compatible w.r.t. *N* if $\mathscr{C} \subseteq \mathscr{C}_N$.

Theorem

 \mathscr{C} is compatible w.r.t. a level-1 network $N \iff \mathscr{C}$ is satisfies **Property (L)**.

In this case, compute $A \cap B$ for all overlapping $A, B \in \mathscr{C}$ and add it to \mathscr{C} if their intersection is not present. (can be done in polynomial time)

Fig. 2. Consider the DAG G with leaf set X = L(G)where $\mathscr{C}_G = \{\{x\}, \{y\}, \{z\}, \{w\}, \{x, y, z\}, X\}$. Here, \mathscr{C}_G satisfies (**KS**) and (**KC**) for k = 2. By definition, \mathscr{C}_G is thus pre-binary. However, G is not a pairwise lea-network since lca(x, y), lea(x, z), and lea(y, z) are not defined. Moreover, \mathscr{C}_G also satisfies (**KC**) for k = 3 but G is not a 3-lea-network since lea(x, y, z) is not defined.

pre-binary clustering system but not pairwise lca-property