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Introduction - pairwise graph alignment

The alignment of two graphs is another graph satisfying certain conditions. For a formal definition see [1, 2]

This alignment can be characterized as follows:

Proposition ([1, 2])

A graph G is an alignment of two graphs G = (V1, E1) and G2 = (Va, E»), if and only if, the set of
columns {Q NV # @ and Q NV, # @} defines a common induced subgraph of G; and Gs.

* But in practice we would like the induced
subgraph to be optimal in some way, e.qg.

G2 a maximum common induced subgraph (MCS)
alignment -

[1] Stadler Peter F. 2021. Alignments of biomolecular contact maps. Interface Focus 11. http://doi.org/10.1098/rsfs.2020.0066
[2] Berkemer, S.J., et. al. Compositional Properties of Alignments. Math.Comput.Sci. 15, 609-630 (2021). https://doi.org/10.1007/s11786-020-00496-8
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Introduction - progressive graph alignment

Based on pairwise alignments we can produce a heuristic alignment of multiple graphs ...

Similarity matrix obtained from The guide tree can be obtained with Weighted Pair

graph-kernels, as, for example, Group Method with Arithmetic Mean (WPGMA).
the Structural-Shortest-Path

kernel from python’s graphkit-learn
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Ambiguous Edges - consider the following alignment ...

* Green edges show common induced subgraphs X
XXX
/\
X-0
XX0
| /\
X00
o < ” \_>‘<:>
A B C
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Ambiguous Edges - projections

Xo00

X00 ¢
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Ambiguous Edges - valid alignments

Keep vertices with vector-labels of the form:

Xt

#X#

##X
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Ambiguous Edges — motivation

X00 ( OoXo

A B C
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Ambiguous Edges - but what if ... ?

X-0 -XO

XX0

OXO0
X00

X00 0Xo

A B C
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Ambiguous Edges - still a valid alignment ...

: OXO
X00 i :
o < o \_>‘<:>

B
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Ambiguous Edges - ... and gives better results

X-X
XXX
/\
X-0
XX0
| A |
X00
= -
A B C
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Mutants - generation and alignment of mutants

Initial Graph <o
o / l_"\. \ l : E
-\. .\- B ."'- -.'
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Mutant Tree

(((((D, B),E), F), (G, C)), A)
((((D, B),E), F), (G, C))

(D, B).E), F)

((D, B),E)

Guide Tree
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Mutants - consensus graphs

/ 'i. » Q .
o L '-f.,"' |
Initial Graph 7 N e
| VN E (((((D, B)E), F), (G, C)), A)
.-..\. , \ B \‘.-'..\.
e e, ((((D, B),E), F), (G, C))
—~ ;'\ 2 ':_'__i::_.t"',.._" F (D, B),E), F)
el N (D, B),E)
o (D, B)
_\ .:G 5 B £ F e c A
Mutant Tree Guide Tree
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Mutants - consensus graphs

oo Consensus Graph
/ 'i. » Q .
o L '-f.,"' |
Initial Graph 7 N e
| VN E (((((D, B)E), F), (G, C)), A)
.-..\. , \ B \‘.-'..\.
e e ((((D, B),E), F), (G, C))
— AN i (0. 818 )
el N (D, B),E)
o (D, B)
H._\x..:G 5 B £ F e c A
Mutant Tree Guide Tree
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Mutants - analysis and results

- 50 scenarios, that is, 50 initial graphs

- with 16 vertices each

- and 7 mutants produced in the (full) binary tree fashion

- by randomly removing 1-2 existing vertices and adding 1-2 vertices in each step as mutations

Recall the graph-edit-distance (MCS-distance) between G and H is: d(G, H) = |V(G)| + |V(H)| - 2|MCS(G, H)|

O 125 - —&— kernel-based GT

@) ' random GT and no ambiguous edges
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Running Times — methods for MCS search

We made two MCS search methodologies based on our own implementations of variants of the VF2 algorithm [3].
- the iterative trimming implements VF2 for subgraph isomorphism
- the recursive expansion is an adaptation of the VF2 for MCS search

Iterative Trimming
gl

—

[3] VF2 algorithm: L. P. Cordella et al. "A (sub)graph isomorphism algorithm for matching large graphs,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 26, no. 10, pp. 1367-1372, Oct. 2004, doi: 10.1109/TPAMI.2004.75.

Recursive Expansion

&
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o
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Running Times
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Experiments

Comparison of running times [s] of the eight experiments carried each over the 50 scenarios:
T and S refer to the use of Iterative_Trimming and VF2_step, respectively. Kernel-based (k) or
random (r) guide trees show a moderate but systematic advantage of a kernel-based similarity. The
exclusion () or inclusion (M) of ambiguous edges is also compared.
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Conclusion and Future work

> ambiguous edges provide in practice better alignments that are able to correct biases introduced by random trees.

> The (slower) performance of the Recursive Expansion vs the good performance of the Iterative Trimming can be better explained by the following factors:

(1) the recursive expansion works faster for smaller MCS (less of half the vertices of the smaller from the 2 graphs)
*** the trimming seems to still work “well-enough” for those same cases

(2) it has been reported that back-tracking MCS methods (as the Recursive Expansion) have problems when reaching independent sets, and alternatives
have been proposed based on vertex covers [4]

(3) the MCS recursive expansion based on the VF2 actually looses various properties that make the VF2 efficient, like proposing smaller number of
candidates for expansion and being able to discard those not having the same degree outside the MCS

> Different bounds should be implemented for the recursive expansion so that it works as a proper branch-and-bound algorithm, but these should take into
account different scoring schemes and ambiguous edges. Moreover they should be really easy to compute, because they should be evaluated in every state of
the search space (or seek for alternatives to reduce their repeated evaluation)

> Heuristics for MCS search need to be handled carefully, because even though they might work properly in a pairwise manner, they produce bigger alignments
(were less nodes are being matched), affecting the next alignments in the progressive MGA.

> Experiments should be carried over bigger graphs, but for that we need a more efficient MCS search methodology and it should be implemented in C++

[4] Abu-Khzam et al. "The Maximum Common Subgraph Problem: Faster Solutions via Vertex Covers", 2007 IEEE/ACS International Conference on Computer
Systems and Applications, Amman, Jordan, 2007, pp. 367-373, https:llieeexplore.ieee.org/document/4230982
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Thank you for your attention
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Extra slide — quality of mutants

Linear Regression: Distance between Gp and its Mutants

Linear Regression: Distance between Pairs of Mutants
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Extra slide — order of MCS'’s in sets of mutants
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Extra slide - ambiguous edges

i T R Pearsan correlation -
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Extra slide - why the original VF2 doesn’t work for MCS search

Algﬂ't’ithﬂl 4: candidat e_matchea_origmal{ﬂh Ga, M, =)

Data: Graphs Gy, Gz and a matching M < V(G ) = V(Gz)

Result: Set P of match candidates for extending M

J/ initialize [

By @;

// candidates are neighbors of match but not in the match
for (n1,n2) £ M do

Nj + neighbors of ny in Gy not matched by M;

Nz + neighbors of nz in Gz not matched by M;

Py + Py U Ny ® Na;

end

// alternatively candidates are all unpaired vertices
if Iy = @ then

Ni + set of unmatched vertices in V(G1);

N3 + set of unmatched vertices in V(G3);

By +— Ny = Naj;

end

// get only the —=-minimum of such vertices
m « min<{y : (x,y) € Po};

Pe{(x,y) el y=m};

return P
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Extra slide - running time over sets of random graphs
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Extra slide - problem with independent sets

vertex cover in G,
C

G,

|Gil=n <= m =|G,|
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