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Last Universal Common Ancestor

LUCA

There is a black hole at the heart of biology.
- Nick Lane, The Vital Question
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State of Research

e Substantial progress has been made within prebiotic chemistry and origins of life
(OL) research

e Many lines of research focus on a similar logic of constructing molecules, while
varying reaction conditions (catalysts, temperature, pH, etc)

e Need for a way to systematically trace out the chemical reaction space (CRS), i.e.
the space of possible reactions of a given system.

e Expansion and analysis of a CRS can be done using a software based solution.
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Expansion of a CRS using the M@D! software package

1J. L. Andersen, C. Flamm, D. Merkle & P. F. Stadler; LNCS 9761:73-88; 2016. 3



Rule-Based Expansion of a Chemical Reaction Space

Expansion of a CRS using the M@D! software package
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Chemical Reaction Space (CRS)

1J. L. Andersen, C. Flamm, D. Merkle & P. F. Stadler; LNCS 9761:73-88; 2016. 3
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Search for Conserved Moieties

A CRS with m molecules and r reactions can be represented by it's stoichiometric
matrix S (m X r matrix containing stoichiometric coefficients of each reaction)

Any vector ¢ = (ci, ..., Cm) with the property:
c-5=0

represents a conserved moiety within the CRS!.

Given N conserved moieties, any molecule in the system can be represented as a vector:
m = (my,...,my)", m; amount of moiety i

1s. Miiller, C. Flamm & P. F. Stadler; J. Cheminform. 14(1):1-24; 2022
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Network topological definition of autocatalytic reaction cycles!

1A. Blokhuis, D. Lacoste & P. Nghe; Proc. Natl. Acad. Sci. 117(41): 25230-25236.
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Network topological definition of autocatalytic reaction cycles!

with permission from Phillip Honegger (publication forthcomming)

1A. Blokhuis, D. Lacoste & P. Nghe; Proc. Natl. Acad. Sci. 117(41): 25230-25236.



Search for Autocatalytic (AC) Cycles

Network topological definition of autocatalytic reaction cycles!
*‘ Search constraints:

e exclusion of molecules
y ® e exclusion of reactions

e maximum cycle length

with permission from Phillip Honegger (publication forthcomming)

1A. Blokhuis, D. Lacoste & P. Nghe; Proc. Natl. Acad. Sci. 117(41): 25230-25236.
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CRS Expansion-Analysis Workflow

e Implement a given chemistry as a graph-grammar

Perform a constrained expansion of the corresponding CRS

Analyze the properties of the CRS

Search for certain reaction pathways within the CRS

Analyze the properties of the found pathways
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R. Krishnamurthy & C. L. Liotta; Chem 9(4): 784-797; 2023. 7



Reaction System

R. Krishnamurthy & C. L. Liotta; Chem 9(4)

1 784-797; 2023.

Initially present Molecules:
e Glyoxylate
e Glycolaldehyde

Four types of reactions:
e Carbonyl Migration
e (Retro)-Aldol

e Decarboxylation
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Reaction Grammar

1 0 OH Glycolaldehyde (GLYC)
R H - R:C, H Y Oy
Ry b Ry ? Ry C, H
OH O
2 0 0 O OH H
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Expansion constraint:

e no molecules with more than
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CRS Expansion

Expansion constraint:

e no molecules with more than
8 C-atoms

General CRS properties:
e 46 Molecules

e 156 Reactions
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e CO;,-moiety (acid-group)
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a combination of them
OH 1
H 1

Glyoxylate (GLX)

O OH OH O

Senad

OH OH OH



Conserved Moieties

Two conserved moieties found in expanded CRS: 0
e HyCO-moiety (carbonyl-, alcohol-group) )H (2)
H 0
e CO;,-moiety (acid-group)

. . Glyocolaldehyde (GYC)
Any molecule in the CRS can be decomposed into

a combination of them
OH 1
Furthermore, define a set of basis-species H 1
(molecules with only one of each moiety):
Glyoxylate (GLX)

LG =0 AL

Formaldehyde (FORM) OH OH OH
10



Conserved Moieties: Reaction Path A
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Conserved Moieties: Reaction Path A
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Conserved Moieties: Reaction Path B
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Conserved Moieties: Reaction Path B
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AC-Cycle Search

General constraints:

e GLX, FORM, CO; excluded as on-cycle species

e Carboxylation reactions excluded

Two main search strategies on the CRS:

1. “Strict” Search 2. “Relaxed” Search
e only aldol-addition with GLX e general aldol-additions
e maximum 7 reactions e maximum 4 reactions
= 43 AC-Cycles = 3144 AC-Cycles

13
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AC-Cycle Energies

Calculate reaction energy A,G° using the eQuilibrator! software package

1M. E. Beber, M. G. Gollub, D. Mozaffari, K. M. Shebek, A. |. Flamholz, R. Milo & E. Noor;
Nucleic Acids Res. 50(D1): D603-D609; 2022.
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AC-Cycle Energies

Calculate reaction energy A,G° using the eQuilibrator! software package

“Strict Search” AC-Cycles:
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121 _Aijuz

8:G form

freq

A I | I Y

0 5
-110 -100 -90 -80 -70 -60 -50 -40 -30 -—2(
AG [kJ/mol)|

1M. E. Beber, M. G. Gollub, D. Mozaffari, K. M. Shebek, A. |. Flamholz, R. Milo & E. Noor; 14
Nucleic Acids Res. 50(D1): D603-D609; 2022.



AC-Cycle Energies

Calculate reaction energy A,G° using the eQuilibrator! software package
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Types of AC-Cycles: "Recombination" Cycle
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Types of AC-Cycles: "Recombination" Cycle
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e Investigate and compare the CRSs associated to other types of chemistries
e Find out how specific pathways could emerge out of a certain CRS

e Convert an expanded CRS into a thermodynamic landscape and investigate how
it changes with different parameter choices

e Further contrast the role of “build-up” and “recombination” AC-cycles in OL and
protometabolism
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