Expansion and Exploration of Prebiotic Chemical Reaction Spaces through Rule Based Modeling

Nino Lauber

39th TBI Winterseminar

15th Februar 2024, Bled

Introduction

Motivation: Origins of Life (OL) Research

Motivation: Origins of Life (OL) Research

Last Universal Common Ancestor

LUCA

There is a black hole at the heart of biology. - Nick Lane, The Vital Question

• Substantial progress has been made within prebiotic chemistry and origins of life (OL) research

- Substantial progress has been made within prebiotic chemistry and origins of life (OL) research
- Many lines of research focus on a **similar logic** of constructing molecules, while varying reaction conditions (catalysts, temperature, pH, etc)

- Substantial progress has been made within prebiotic chemistry and origins of life (OL) research
- Many lines of research focus on a **similar logic** of constructing molecules, while varying reaction conditions (catalysts, temperature, pH, etc)
- Need for a way to systematically trace out the chemical reaction space (CRS), i.e. the space of **possible reactions** of a given system.

- Substantial progress has been made within prebiotic chemistry and origins of life (OL) research
- Many lines of research focus on a **similar logic** of constructing molecules, while varying reaction conditions (catalysts, temperature, pH, etc)
- Need for a way to systematically trace out the chemical reaction space (CRS), i.e. the space of possible reactions of a given system.
- Expansion and analysis of a CRS can be done using a software based solution.

Methods

Rule-Based Expansion of a Chemical Reaction Space

Rule-Based Expansion of a Chemical Reaction Space

Expansion of a CRS using the $M \emptyset D^1$ software package

Rule-Based Expansion of a Chemical Reaction Space

Expansion of a CRS using the $M \emptyset D^1$ software package

¹J. L. Andersen, C. Flamm, D. Merkle & P. F. Stadler; LNCS 9761:73–88; 2016.

Search for Conserved Moieties

A CRS with *m* molecules and *r* reactions can be represented by it's **stoichiometric matrix** *S* ($m \times r$ matrix containing stoichiometric coefficients of each reaction)

A CRS with *m* molecules and *r* reactions can be represented by it's **stoichiometric matrix** *S* ($m \times r$ matrix containing stoichiometric coefficients of each reaction)

Any vector $c = (c_1, \ldots, c_m)$ with the property:

 $c \cdot S = 0$

represents a **conserved moiety** within the CRS¹.

¹S. Müller, C. Flamm & P. F. Stadler; J. Cheminform. 14(1):1-24; 2022

A CRS with *m* molecules and *r* reactions can be represented by it's **stoichiometric matrix** *S* ($m \times r$ matrix containing stoichiometric coefficients of each reaction)

Any vector $c = (c_1, \ldots, c_m)$ with the property:

 $c \cdot S = 0$

represents a **conserved moiety** within the CRS¹.

Given N conserved moieties, any molecule in the system can be represented as a vector: $m = (m_1, \ldots, m_N)^T$, m_i amount of moiety i

¹S. Müller, C. Flamm & P. F. Stadler; J. Cheminform. 14(1):1-24; 2022

Network topological definition of autocatalytic reaction cycles¹

¹A. Blokhuis, D. Lacoste & P. Nghe; Proc. Natl. Acad. Sci. 117(41): 25230-25236.

Network topological definition of autocatalytic reaction cycles¹

with permission from Phillip Honegger (publication forthcomming)

¹A. Blokhuis, D. Lacoste & P. Nghe; Proc. Natl. Acad. Sci. 117(41): 25230-25236.

Network topological definition of autocatalytic reaction cycles¹

with permission from Phillip Honegger (publication forthcomming)

¹A. Blokhuis, D. Lacoste & P. Nghe; Proc. Natl. Acad. Sci. 117(41): 25230-25236.

Search constraints:

- exclusion of molecules
- exclusion of reactions
- maximum cycle length

CRS Expansion-Analysis Workflow

• Implement a given chemistry as a graph-grammar

- Implement a given chemistry as a graph-grammar
- Perform a constrained expansion of the corresponding CRS

- Implement a given chemistry as a graph-grammar
- Perform a constrained expansion of the corresponding CRS
- Analyze the **properties** of the CRS

- Implement a given chemistry as a graph-grammar
- Perform a constrained expansion of the corresponding CRS
- Analyze the properties of the CRS
- Search for certain reaction pathways within the CRS

- Implement a given chemistry as a graph-grammar
- Perform a constrained expansion of the corresponding CRS
- Analyze the properties of the CRS
- Search for certain reaction pathways within the CRS
- Analyze the properties of the found pathways

Case Study: Glyoxylose Reaction

Reaction System

R. Krishnamurthy & C. L. Liotta; Chem 9(4): 784-797; 2023.

Reaction System

R. Krishnamurthy & C. L. Liotta; Chem 9(4): 784-797; 2023.

Initially present Molecules:

- Glyoxylate
- Glycolaldehyde

Four types of reactions:

- Carbonyl Migration
- (Retro)-Aldol
- Decarboxylation

Results

CRS Expansion

Expansion constraint:

 no molecules with more than 8 C-atoms

CRS Expansion

Expansion constraint:

• no molecules with more than 8 C-atoms

CRS Expansion

Expansion constraint:

 no molecules with more than 8 C-atoms

General CRS properties:

- 46 Molecules
- 156 Reactions

Conserved Moieties

Two conserved moieties found in expanded CRS:

- H₂CO-moiety (carbonyl-, alcohol-group)
- CO₂-moiety (acid-group)

Any molecule in the CRS can be **decomposed** into a **combination** of them

Conserved Moieties

Two conserved moieties found in expanded CRS:

- H₂CO-moiety (carbonyl-, alcohol-group)
- CO₂-moiety (acid-group)

Any molecule in the CRS can be **decomposed** into a **combination** of them

Conserved Moieties

Two conserved moieties found in expanded CRS:

- H₂CO-moiety (carbonyl-, alcohol-group)
- CO₂-moiety (acid-group)

Any molecule in the CRS can be **decomposed** into a **combination** of them

Furthermore, define a set of **basis-species** (molecules with only one of each moiety):

Formaldehyde (FORM)

Conserved Moieties: Reaction Path A

Conserved Moieties: Reaction Path B

- GLX, FORM, CO₂ excluded as on-cycle species
- Carboxylation reactions excluded

- GLX, FORM, CO₂ excluded as on-cycle species
- Carboxylation reactions excluded

Two main search strategies on the CRS:

- GLX, FORM, CO₂ excluded as on-cycle species
- Carboxylation reactions excluded

Two main search strategies on the CRS:

- 1. "Strict" Search
 - only aldol-addition with GLX
 - maximum 7 reactions
- \Rightarrow 43 AC-Cycles

13

- GLX, FORM, CO₂ excluded as on-cycle species
- Carboxylation reactions excluded

Two main search strategies on the CRS:

- 1. "Strict" Search
 - only aldol-addition with GLX
 - maximum 7 reactions

 \Rightarrow 43 AC-Cycles

- 2. "Relaxed" Search
 - general aldol-additions
 - maximum 4 reactions
- \Rightarrow 3144 AC-Cycles

AC-Cycle Energies

Calculate reaction energy $\Delta_r G^\circ$ using the *eQuilibrator*¹ software package

¹M. E. Beber, M. G. Gollub, D. Mozaffari, K. M. Shebek, A. I. Flamholz, R. Milo & E. Noor; Nucleic Acids Res. 50(D1): D603–D609; 2022.

AC-Cycle Energies

Calculate reaction energy $\Delta_r G^\circ$ using the *eQuilibrator*¹ software package

"Strict Search" AC-Cycles:

¹M. E. Beber, M. G. Gollub, D. Mozaffari, K. M. Shebek, A. I. Flamholz, R. Milo & E. Noor; Nucleic Acids Res. 50(D1): D603–D609; 2022.

AC-Cycle Energies

Calculate reaction energy $\Delta_r G^\circ$ using the *eQuilibrator*¹ software package

"Strict Search" AC-Cycles:

"Relaxed Search" AC-Cycles:

¹M. E. Beber, M. G. Gollub, D. Mozaffari, K. M. Shebek, A. I. Flamholz, R. Milo & E. Noor; Nucleic Acids Res. 50(D1): D603–D609; 2022.

Types of AC-Cycles: "Build-Up" Cycle

Types of AC-Cycles: "Recombination" Cycle

Types of AC-Cycles: "Recombination" Cycle

Outlook

Outlook

• Investigate and compare the CRSs associated to other types of chemistries

- Investigate and compare the CRSs associated to other types of chemistries
- Find out how specific pathways could emerge out of a certain CRS

- Investigate and compare the CRSs associated to other types of chemistries
- Find out how specific pathways could emerge out of a certain CRS
- Convert an expanded CRS into a **thermodynamic landscape** and investigate how it changes with different parameter choices

- Investigate and compare the CRSs associated to other types of chemistries
- Find out how specific pathways could emerge out of a certain CRS
- Convert an expanded CRS into a **thermodynamic landscape** and investigate how it changes with different parameter choices
- Further contrast the role of "build-up" and "recombination" AC-cycles in OL and protometabolism

Thank you for your Attention!

Contact: nino.lauber@univie.ac.at

Thanks for the discussions:

Christoph Flamm, Jakob L. Andersen, Phillip Honegger, Eric Smith, Harrison B. Smith, Ramanarayanan Krishnamurthy, Charles L. Liotta

Wiensität thi SDU I MATOMIC

MATOMIC is funded by the Novo Nordisk Foundation, supported by grant NNF21OC0066551