

Training Alliance for Computational systems chemistry

A Sensitivity Analysis for Rule-based Systems Chemistry

Erika M. Herrera Machado

machado@imada.sdu.dk

Supervisors: Daniel Merkle Jakob Lykke Andersen Peter Dittrich Rolf Fagerberg

This project has received funding from the European Unions Horizon 2021 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No 101072930

Table of contents

1. Introduction

2. Current work

3. Application

Network-free stochastic simulation

MØD

Ruled-based Gillespie simulation

Trace analysis

Network-free stochastic simulation

MØD

Ruled-based Gillespie simulation

Trace analysis

Η

Н-

Network-free stochastic simulation

MØD

Ruled-based Gillespie simulation

Trace analysis

Trace analysis

Table of contents

1. Introduction

2. Current work 💥

3. Application

Sensitivity Analysis for reaction rate constants

How changes in the input variables of a model impact the output?

One-at-a-Time (OAT)

• Change one input variable at a time, keeping others constant.

Derivative-Based Local Methods

• Take partial derivatives of the output with respect to each input.

Regression Analysis

• Fit a linear regression to the model response.

Variance-Based Methods

• Decompose output variance into contributions from input variables and interactions.

Sensitivity Analysis for reaction rate constants

two E molecules are present at the same time w.r.t the reaction rate constants?

Sample reaction rate constants from hypersphere

Sensitivity Analysis for reaction rate constants

Sensitivity Analysis for reaction rate constants

How sensitive is the time until two E molecules are present at the same time w.r.t the reaction rate constants?

Repeat for neighboring points

Sensitivity Analysis for reaction rate constants

two E molecules are present at the same time w.r.t the reaction rate constants?

$$\frac{f(x+h)-f(x)}{h}$$

Table of contents

1. Introduction

2. Current work

Formose process on an early Earth as seen by DALL·E

Sensitivity Analysis for reaction rate constants

Formose + borate

- Kim, H. J., Ricardo, A., Illangkoon, H. I., Kim, M. J., Carrigan, M. A., Frye, F., & Benner, S. A. (2011). Synthesis of carbohydrates in mineralguided prebiotic cycles. Journal of the American Chemical Society, 133(24), 9457-9468.
- Andersen, J. L., Flamm, C., Merkle, D., & Stadler, P. F. (2014).
 Generic strategies for chemical space exploration. International journal of computational biology and drug design, 7(2-3), 225-258.

Sensitivity Analysis for reaction rate constants

With borate				
		Average	Std Dev	
	Size of DG	38.7	7.83	
	Unique pentoses in DG	7.05	0.86	
Final state of the simulation	Total amount pentoses	7.65	1.98	
	Unique pentoses	2.8	0.81	
	Carbons in pentoses	38.25	9.91	

Vithout borate					
		Average	Std Dev		
	Size of DG	95.8	9.28		
	Unique pentoses in DG	7.75	0.89		
nal state of the mulation	Total amount pentoses	12	3.29		
	Unique pentoses	2.8	0.6		
	Carbons in pentoses	60	16.43		

Fi

Si

TACsy

Training Alliance for Computational systems chemistry

Thank you!

Erika M. Herrera Machado

machado@imada.sdu.dk

Founded by the European Union This project has received funding from the European Unions Horizon 2021 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No 101072930